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THE JOINT BIDIAGONALIZATION METHOD FOR LARGE GSVD
COMPUTATIONS IN FINITE PRECISION*

ZHONGXIAO JIA\dagger AND HAIBO LI\dagger 

Abstract. The joint bidiagonalization (JBD) method has been used to compute some extreme
generalized singular values and vectors of a large regular matrix pair \{ A,L\} . We make a numerical
analysis of the underlying JBD process and establish relationships between it and two mathematically
equivalent Lanczos bidiagonalizations in finite precision. Based on the results of numerical analysis,
we investigate the convergence of the approximate generalized singular values and vectors of \{ A,L\} .
The results show that, under some mild conditions, the semiorthogonality of Lanczos-type vectors
suffices to deliver approximate generalized singular values with the same accuracy as the full orthog-
onality does, meaning that it is only necessary to seek for efficient semiorthogonalization strategies
for the JBD process. We establish a sharp bound for the residual norm of an approximate generalized
singular value and corresponding approximate right generalized singular vectors, which can reliably
estimate the residual norm without explicitly computing the approximate right generalized singular
vectors before the convergence occurs.

Key words. generalized singular value decomposition, joint bidiagonalization, Lanczos bidiag-
onalization, rounding error, orthogonality level, Ritz value, reorthogonalization, residual norm

MSC codes. 65F15, 65F20, 65F25, 15A18, 65F50, 65G50
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1. Introduction. The generalized singular value decomposition (GSVD) of two
matrices A and L was introduced by Van Loan [36] and further developed by Paige
and Saunders [26]. For A \in \BbbR m\times n and L \in \BbbR p\times n, to ease the presentation, suppose
that the matrix pair \{ A,L\} is regular, i.e., rank((AT ,LT )T ) = n with rank(\cdot ) being
the rank of a matrix. Then the GSVD of \{ A,L\} is

(1.1) A= PACAX
 - 1, L= PLSLX

 - 1

where PA and PL are orthogonal, X is nonsingular, and the diagonal matrices CA =
diag(c1, c2, . . . , cn) \in \BbbR m\times n and SL = diag(s1, s2, . . . , sn) \in \BbbR p\times n with 0 \leq ci, si \leq 1
and c2i + s2i = 1. The case rank((AT ,LT )T ) = r < n is called singular. The GSVD
of the singular matrix pair \{ A,L\} is defined and analyzed in [26], where the matrix
pair has n - r arbitrary pairs \{ c, s\} as generalized singular values, called trivial ones.
More details on the GSVD with rank((AT ,LT )T ) = r < n can be found in [26]. The
singular case is subtle and more complicated, as the generalized singular values are
discontinuous with respect to matrix entries when the pair \{ A,L\} is singular. We refer
the reader to [1, section 2.6.9] for a discussion on the discontinuity of the generalized
eigenvalue problem of \{ ATA,LTL\} , which is equivalent to the GSVD of \{ A,L\} [26].
In this paper, we restrict ourselves to the GSVD of the regular matrix pair \{ A,L\} .

Specifically, label the ci < 1 in nonincreasing order, and let these ci and the corre-
sponding si constitute the first diagonal blocks of CA and SL. Write X = (x1, . . . , xn),
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THE JBD METHOD IN FINITE PRECISION 383

PA = (pA1 , . . . , p
A
m), and PL = (pL1 , . . . , p

L
p ). Then for \{ A,L\} regular, the number of

such pairs \{ ci, si\} is q= n - q1 - q2, where q1 =dim(\scrN (A)) and q2 =dim(\scrN (B)) with
\scrN (\cdot ) the null space of a matrix. They correspond to the nonzero and finite generalized
singular values ci/si, i= 1,2, . . . , q, called nontrivial ones. In terms of these notations,
we can write the corresponding GSVD part in (1.1) in the vector form

(1.2)

\left\{     
Axi = cip

A
i ,

Lxi = sip
L
i ,

siA
T pAi = ciL

T pLi ,

i= 1, . . . , q,

where the ith large generalized singular value of \{ A,L\} is ci/si and the ith corre-
sponding generalized singular vectors are xi, p

A
i , and pLi , respectively. We call xi the

right generalized singular vector and pAi and pLi the left generalized singular vectors
corresponding to ci/si. We also use pair \{ ci, si\} to denote a generalized singular value.
We mention that each xi satisfies the normalization xT

i (A
TA+LTL)xi = 1. For more

details on the GSVD of the regular matrix pair \{ A,B\} , we refer the reader to [9].
In [37], Zha presents a joint bidiagonalization process (JBD) that jointly bidi-

agonalizes a large sparse or structured matrix pair \{ A,L\} to upper diagonal forms
successively. He exploits the JBD process to compute a few extreme generalized singu-
lar values and vectors of \{ A,L\} . Kilmer, Hansen, and Espa\~nol [17] develop a variant
of the JBD process that jointly reduces \{ A,L\} to lower and upper bidiagonal forms.
Besides the computation of a few extreme GSVD components, this variant is used to
solve large-scale linear discrete ill-posed problems with general-form regularization,
where L is the regularization matrix [6, 7, 16, 17].

Let

(1.3)

\biggl( 
A
L

\biggr) 
=QR=

\biggl( 
QA

QL

\biggr) 
R

be the compact QR factorization of the stacked matrix, where Q\in \BbbR (m+p)\times n is column
orthonormal and R \in \BbbR n\times n is upper triangular and QA \in \BbbR m\times n and QL \in \BbbR p\times n. Then
the GSVD (1.1) of \{ A,L\} is related to the CS decomposition

(1.4) QA = PACAW
T , QL = PLSLW

T

of \{ QA,QL\} [5, section 2.5.4], where W is orthogonal and X =R - 1W .
The k-step JBD process [17] of \{ A,L\} is mathematically equivalent to lower and

upper Lanczos bidiagonalizations [27] of QA and QL,

QAVk =Uk+1Bk, QT
AUk+1 = VkB

T
k + \alpha k+1vk+1e

T
k+1,(1.5)

QL
\widehat Vk = \widehat Uk

\widehat Bk, QT
L
\widehat Uk = \widehat Vk

\widehat BT
k + \^\beta k\^vk+1e

T
k ,(1.6)

where ek is the last column of the identity matrix Ik of order k,

(1.7)

Bk =

\left(        

\alpha 1

\beta 2 \alpha 2

\beta 3
. . .

. . . \alpha k

\beta k+1

\right)        \in \BbbR (k+1)\times k, \widehat Bk =

\left(      
\^\alpha 1

\^\beta 1

\^\alpha 2
. . .

. . . \^\beta k - 1

\^\alpha k

\right)      \in \BbbR k\times k

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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384 ZHONGXIAO JIA AND HAIBO LI

and

(1.8) Uk+1 = (u1, . . . , uk+1)\in \BbbR m\times (k+1), Vk = (v1, . . . , vk)\in \BbbR n\times k

and

(1.9) \widehat Uk = (\^u1, . . . , \^uk)\in \BbbR p\times k, \widehat Vk = (\^v1, . . . , \^vk)\in \BbbR n\times k

with the starting vector \^v1 = v1 of the upper Lanczos bidiagonalization (1.6).
It is proved in [17, 37] that

(1.10) \^vi+1 = ( - 1)ivi+1, \^\alpha i
\^\beta i = \alpha i+1\beta i+1.

It is well known from, e.g., [3], that the lower bidiagonal Bk is the Ritz--Galerkin
projection of QA on the left subspace span(Uk+1) and the right subspace span(Vk),
while the upper bidiagonal \widehat Bk is the Ritz--Galerkin projection of QL on the left and
right subspaces span(\widehat Uk) and span(Vk), where span(\cdot ) denotes the subspace spanned
by the columns of a matrix. Therefore, the extreme singular values of QA or QL can
be approximated by those of Bk or \widehat Bk.

In finite precision arithmetic, we have numerically observed that the four sets
of basis vectors computed by the JBD process, whose algorithmic implementation
will be detailed in the next section, lose orthogonality gradually. This is a typical
phenomenon in Lanczos-type algorithms, such as the symmetric Lanczos process [18]
and the Lanczos bidiagonalization process [19]. The loss of orthogonality of Lanczos
vectors leads to a delay of convergence of some extreme eigenvalues and the appear-
ance of spurious computed Ritz values, i.e., ghost Ritz values, [21, 22, 23, 25]. To fix
this deficiency, several reorthogonalization strategies have been proposed to maintain
some level of orthogonality of the computed Lanczos vectors in order to avoid these
consequences [29, 31, 32]. Particularly, Simon [31] proves that the semiorthogonal-
ity of Lanczos vectors suffices to guarantee that the computed Ritz values have the
same accuracy as the full orthogonality does and avoid spurious computed Ritz val-
ues. These results have been extended by Larsen [19] to Lanczos bidiagonalization,
based on which he proposes an efficient partial reorthogonalization strategy. Later,
Simon and Zha in [33] proposed a one-sided reorthogonalization strategy on the right
Lanczos vectors. Barlow [2] makes a backward error analysis of the one-sided re-
orthogonalization scheme and proves that Lanczos bidiagonalization of a matrix C
produces Krylov subspaces generated by a nearby matrix C +E, where E is an error
matrix depending on the orthogonality level of the computed right Lanczos vectors.

Denote the unit roundoff by \epsilon . In finite precision, among many others, a central
concern is whether or not the JBD process for computing Uk+1, Vk, and Bk is equiv-
alent to the standard lower Lanczos bidiagonalization of QA with the rounding error
O(\epsilon ) and whether or not the process for computing \widehat Uk, \widehat Vk, and \widehat Bk is equivalent to
the upper Lanczos bidiagonalization of QL with the rounding error O(\epsilon ). There has
been yet no result on the finite precision behavior of the JBD process. In this paper,
we will focus on it and, based on some underlying roundoff error models and results,
make a numerical analysis of the JBD process. We will derive a number of properties
of the JBD process. Our contributions mainly consist of the following three parts.

First, we will show that the equivalence of the JBD process and standard lower
and upper Lanczos bidiagonalizations holds only conditionally in finite precision. That
is, the finite precision forms resulting from the JBD process may be no longer the
corresponding ones of standard Lanczos bidiagonalizations if there are no additional

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE JBD METHOD IN FINITE PRECISION 385

conditions. We will investigate what a role rounding errors play in the loss of this
equivalence and in what way rounding errors are amplified.

Second, we will show that the orthogonality levels of Uk+1, \widetilde Vk, and \widehat Uk are closely
related and that those of \widetilde Vk and Vk interact too. In particular, we derive an upper
bound for the orthogonality level of \widehat Uk, which is shown to be controlled by not only
the orthogonality levels of \widetilde Vk and Uk+1 but also a gradually growing quantity \| \widehat B - 1

k \| .
The result indicates that the orthogonality level of \widehat Uk is similar to those of Uk+1

and \widetilde Vk, provided that \widehat Bk is not ill conditioned. In the meantime, we prove that the
orthogonality level of \widetilde Vk is controlled by that of Vk. Therefore, when designing a
reorthogonalization strategy for the JBD process, one only needs to reorthogonalize
ui and vi. This way saves reorthogonalization cost considerably.

Third, we shall investigate the convergence of the JBD method for computing
extreme GSVD components of \{ A,L\} . We show that, under the assumptions that
\| B - 1

k \| and \| \widehat B - 1
k \| are modest uniformly with k, the semiorthogonality of Lanczos-type

vectors suffices to guarantee that the approximate generalized singular values have the
same accuracy as the full orthogonality does. Here the semiorthogonality means that
the absolute value of inner product of two unit length vectors is O(\epsilon 1/2), in contrast
to the full orthogonality level O(\epsilon ). Therefore, the semiorthogonality of basis vectors
suffices for the JBD method when computing generalized singular values accurately.
In the meantime, we study the residual norm of an approximate generalized singular
value and approximate right generalized singular vector, whose size is used to design
a stopping tolerance for the JBD method. In finite precision, we derive an upper
bound for the residual norm and show that this upper bound can replace the residual
norm to design a reliable stopping criterion without explicitly computing approximate
right generalized singular vectors before the convergence occurs. We only compute
the approximate right generalized singular vectors by solving certain consistent least
squares problems with the coefficient matrix (AT ,LT )T at the convergence rather
than doing so at each iteration.

The paper is organized as follows. In section 2, we describe the JBD process in
exact arithmetic. In section 3, we make a numerical analysis of the JBD process in
finite precision. We establish relationships between the JBD process and two lower
and upper Lanczos bidiagonalizations and investigate interactions of orthogonality
levels of the computed basis vectors. In section 4, we describe the JBD method for
computing a number of extreme generalized singular values and vectors of \{ A,L\} 
and discuss the convergence and stopping criteria. In section 5, we report numerical
experiments to confirm our results. Finally, we conclude the paper with some remarks
and future work in section 6.

Throughout the paper, we denote by Ik the identity matrix of order k and by 0k
and 0k\times l the k-dimensional zero vector and the k \times l zero matrix, respectively. The
transpose of a matrix C is denoted by CT , and \| \cdot \| is the 2-norm of a matrix.

2. The JBD process in exact arithmetic. Algorithm 1 describes the JBD
process in [17]. For A and L large, notice that the explicit computation of QR
factorization (1.3) is generally impractical due to the excessive storage and/or com-
putational cost. Thus, both Q and R are generally not available in practical computa-
tions. The JBD process avoids this difficulty in the following way: Let \~ui = (uT

i ,0
T
p )

T ,
i= 1,2, . . . , k+1. Algorithm 1 needs to computeQQT \~ui at steps 2 and 6. SinceQQT \~ui

is nothing but the orthogonal projection of \~ui onto the column space of (AT ,LT )T ,
we have QQT \~ui = (AT ,LT )T \~xi, where

(2.1) \~xi = arg min
\~x\in \BbbR n

\bigm\| \bigm\| \bigm\| \bigm\| \biggl( AL
\biggr) 
\~x - \~ui

\bigm\| \bigm\| \bigm\| \bigm\| .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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386 ZHONGXIAO JIA AND HAIBO LI

This large-scale least squares problem can be solved by an iterative solver, e.g., the
most commonly used LSQR algorithm [27].

Algorithm 1 The k-step JBD process.
1: Choose a nonzero starting vector b\in \BbbR m, and let \beta 1u1 = b, \beta 1 = \| b\| 

2: \alpha 1\~v1 =QQT

\biggl( 
u1

0p

\biggr) 
3: \^\alpha 1\^u1 = \~v1(m+ 1 :m+ p)
4: for i= 1,2, . . . , k, do
5: \beta i+1ui+1 = \~vi(1 :m) - \alpha iui

6: \alpha i+1\~vi+1 =QQT

\biggl( 
ui+1

0p

\biggr) 
 - \beta i+1\~vi

7: \^\beta i = (\alpha i+1\beta i+1)/\^\alpha i

8: \^\alpha i+1\^ui+1 = ( - 1)i\~vi+1(m+ 1 :m+ p) - \^\beta i\^ui

9: end for

Suppose that QQT \~ui, i= 1,2, . . . , k+ 1 are computed accurately. In exact arith-
metic, the k-step JBD process produces the two bidiagonal matrices Bk, \widehat Bk and three
orthonormal matrices Uk+1, \widehat Uk in (1.8)--(1.9) and

\widetilde Vk = (\~v1, . . . , \~vk)\in \BbbR (m+p)\times k,(2.2)

where \~vi =Qvi with vi the ith column of Vk in (1.8), i.e., vi =QT \~vi. The process can
be written as

(Im,0m\times p)\widetilde Vk =Uk+1Bk,(2.3)

QQT

\biggl( 
Uk+1

0p\times (k+1)

\biggr) 
= \widetilde VkB

T
k + \alpha k+1\~vk+1e

T
k+1,(2.4)

(0p\times m, Ip)\widetilde VkDk = \widehat Uk
\widehat Bk,(2.5)

where Dk = diag(1, - 1, . . . , ( - 1)k - 1)\in \BbbR k\times k and ek+1 is the last column of Ik+1.
By the QR factorization (1.3), relations (2.3) and (2.5) are precisely

(2.6) AZk =Uk+1Bk, LZk = \widehat Uk
\=Bk,

where Zk =R - 1Vk = (z1, . . . , zk) and \=Bk = \widehat BkDk and

(2.7) BT
k Bk + \=BT

k
\=Bk = Ik.

Therefore, the singular values of Bk and \=Bk can be determined by each other.

3. The JBD process in finite precision. In the following, we do not consider
the solution accuracy of the inner least squares problem (2.1) at each iteration and
always assume that (2.1) is solved accurately.

Before proceeding, we define the orthogonality level of a set of vectors as
follows.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE JBD METHOD IN FINITE PRECISION 387

Definition 3.1. For a rectangular matrix Wk = (w1, . . . ,wk)\in \BbbR r\times k with \| wj\| =
1, j = 1, . . . , k, we call \xi ij = | wT

i wj | the orthogonality level among wi and wj. The
orthogonality level of \{ w1, . . . ,wk\} or Wk is measured by one of

\xi (Wk) = max
1\leq i \not =j\leq k

\xi ij ,(3.1)

\eta (Wk) = \| Ik  - WT
k Wk\| .(3.2)

Two measures are equivalent since \xi (Wk) \leq \eta (Wk) \leq k\xi (Wk). It is also known
from, e.g., [2], that

(3.3) \| Wk\| \leq 
\sqrt{} 

1 + \eta (Wk).

We next state a set of basics on the behavior of the rounding errors occurring in
the JBD process, which are adapted from the symmetric Lanczos process and Lanczos
bidiagonalization. From now on, without confusion, we use the same notation as
before to denote the computed ones in finite precision. In this case, relations (2.3)--
(2.5) add rounding error terms (cf. [28, section 13.4]) and become

(Im,0m\times p)\widetilde Vk =Uk+1Bk + \widetilde Fk,(3.4)

QQT

\biggl( 
Uk+1

0p\times (k+1)

\biggr) 
= \widetilde VkB

T
k + \alpha k+1\~vk+1e

T
k+1 +

\widetilde Gk+1,(3.5)

(0p\times m, Ip)\widetilde VkDk = \widehat Uk
\widehat Bk + \=Fk,(3.6)

where the rounding error matrices \widetilde Fk = ( \~f1, . . . , \~fk), \widetilde Gk+1 = (\~g1, . . . , \~gk+1), and \=Fk =
( \=f1, . . . , \=fk) satisfy

(3.7) \| \widetilde Fk\| ,\| \widetilde Gk+1\| ,\| \=Fk\| =O(\epsilon ).

Second, the following local orthogonality of ui holds, similar to [24, 31]:

\beta i+1| uT
i+1ui| =O(c1(m,n)\epsilon ),(3.8)

where c1(m,n) is a modest constant depending on m and n.

3.1. Relationships between the JBD process and Lanczos bidiagonal-
izations in finite precision. We first present the following results.

Theorem 3.1. Let vi =QT \~vi, Vk = (v1, . . . , vk) and Bk =

\biggl( 
BT

k - 1

\alpha ke
T
k

\biggr) 
\in \BbbR k\times k.

Then

(3.9) \| \widetilde Vk  - QVk\| \leq \| \widetilde GkB
 - 1
k \| =O(\| B - 1

k \| \epsilon )

with \widetilde Gk defined in (3.5) and

(3.10) \xi (\widetilde Vk) = \xi (Vk) +O(\| B - 1
k \| \epsilon ).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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388 ZHONGXIAO JIA AND HAIBO LI

Proof. Write the matrix C = (AT ,LT )T . Then

QQT =CC\dagger , QQTC =C, QQT

\biggl( 
Uk

0p\times k

\biggr) 
=CXk,

where ``\dagger "" denotes the Moore--Penrose inverse of a matrix and Xk =C\dagger 
\biggl( 

Uk

0p\times k

\biggr) 
. From

(3.5) and Vk =QT \widetilde Vk, we have CXk = \widetilde VkBk+
\widetilde Gk, leading to \widetilde Vk =CXkB

 - 1
k  - \widetilde GkB

 - 1
k .

Therefore, we obtain\widetilde Vk  - QVk = \widetilde Vk  - QQT \widetilde Vk = \widetilde Vk  - QQT (CXkB
 - 1
k  - \widetilde GkB

 - 1
k )

= \widetilde Vk  - CXkB
 - 1
k +QQT \widetilde GkB

 - 1
k = - \widetilde GkB

 - 1
k +QQT \widetilde GkB

 - 1
k

= (QQT  - Im+p) \widetilde GkB
 - 1
k .(3.11)

Taking norms in both sides proves (3.9).
Since Q is orthonormal, it is easily justified that the orthogonality level \xi (\widetilde Vk) is

as accurate as \xi (Vk) within O(\| B - 1
k \| \epsilon ). This proves (3.10).

Using (3.9), we can rewrite (3.4) as

(3.12) (Im,0m\times p)QVk =Uk+1Bk + Fk,

where

(3.13) Fk = \widetilde Fk  - (Im,0m\times p)(\widetilde Vk  - QVk).

Then from (3.7) and (3.9), we have \| Fk\| = O(\| B - 1
k \| \epsilon ). Premultiplying (3.5) by

QT and exploiting (Im,0m\times p)QVk =QAVk straightforwardly yields the lower Lanczos
bidiagonalization of QA in finite precision resulting from the JBD process.

Theorem 3.2. Suppose that the inner least squares problem (2.1) is solved accu-
rately. In finite precision, we have

QAVk =Uk+1Bk + Fk,(3.14)

QT
AUk+1 = VkB

T
k + \alpha k+1vk+1e

T
k+1 +Gk+1,(3.15)

where Gk+1 =QT \widetilde Gk+1 with \widetilde Gk+1 in (3.5) and \| Fk\| =O(\| B - 1
k \| \epsilon ), \| Gk+1\| =O(\epsilon ).

This theorem indicates that the error term Fk is amplified gradually as \| B - 1
k \| 

grows with k. Importantly, for QA strictly rectangular, i.e., m>n, the size of \| B - 1
k \| 

may be uncontrollably large, as shown below: From the second relation in (1.5), we
obtain

UT
k QAQ

T
AUk =BT

kBk,

indicating that the eigenvalues of BT
kBk are the Ritz values of the singular matrix

QAQ
T
A with respect to span(Uk) and lie between the largest and smallest eigenvalues

of QAQ
T
A. Notice that span(Uk) is the Krylov subspace generated by

u1,QAQ
T
Au1, . . . , (QAQ

T
A)

k - 1u1.

Then the smallest eigenvalue of BT
kBk may approach the zero eigenvalue of QAQ

T
A as

k increases, so that \| B - 1
k \| may become uncontrollably large; on the other hand, for
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THE JBD METHOD IN FINITE PRECISION 389

QA flat or square, i.e., m\leq n, and having full row rank, however, such a phenomenon
definitively cannot occur, and the smallest eigenvalue of BT

kBk is bounded from below
by the smallest positive one ofQAQ

T
A. We refer the reader to [12] on a detailed analysis

on Bk and its singular values. As a result, the JBD process for computing Uk+1, Vk,
and Bk is conditionally equivalent to the lower Lanczos bidiagonalization ofQA, whose
rounding error term in the place of Fk is always O(\| QA\| \epsilon ) =O(\epsilon ) in size.

Similarly, from (1.10) and the first relation in (1.6), we have

V T
k QT

LQLVk = \=BT
k
\=Bk.

Since span(Vk) is the Krylov subspace generated by v1,Q
T
LQLv1, . . . , (Q

T
LQL)

k - 1v1,
we can make a similar analysis to the above. Specifically, if QL is rectangular or
square and of full column rank, then the smallest singular value of \=Bk converges to
the smallest one of QL from above as k increases, and it is bounded from below by it,
meaning that \| \=B - 1

k \| is controllable; if QL is flat, then the smallest singular value of
\=Bk may approach zero as k increases, causing that \| \=B - 1

k \| may not be controlled and
become large as k increases.

The above analysis and assertions suggest us to first check the orders of A and
L and then perform the JBD process on either \{ A,L\} or \{ L,A\} when attempting to
ensure that the resulting \| B - 1

k \| and \| \=B - 1
k \| are bounded whenever possible. As will

be seen later, their boundedness is desirable for the JBD process and the JBD method
for the GSVD computation in finite precision.

The following results are presented in [13, Theorem 3.1] and its proof, which will
be used later.

Theorem 3.3. With the hypothesis of Theorem 3.2, in finite precision, we have

BT
k Bk + \=BT

k
\=Bk = Ik +Ek,(3.16)

\alpha i+1\beta i+1 = \^\alpha i
\^\beta i + \gamma i,(3.17)

where Ek is symmetric tridiagonal with its nonzero elements being O(c3(m,n,p)\epsilon ) and
c3(m,n,p) = c1(m,n) + c2(p,n) in size and | \gamma i| \leq [1 +O(c1(m,n)\epsilon )]\epsilon =O(\epsilon ).

Remarkably, (3.16) holds independently of the orthogonality levels of Uk+1, \widehat Uk and\widetilde Vk; it indicates that the squares of singular values of Bk and \=Bk can be determined
by each other with the error O(\epsilon ).

For later use, we establish sharp upper bounds for \| Bk\| and \| \=Bk\| . From (3.4)
and (3.6), at the ith step, we have

\~vi(1 :m) = \alpha iui + \beta i+1ui+1 + \~fi,

( - 1)i - 1\~vi(m+ 1 :m+ p) = \^\alpha i\^ui + \^\beta i - 1\^ui - 1 + \=fi.

Thus, \| \alpha iui + \beta i+1ui+1\| 2 = \| \~vi(1 :m) - \~fi\| 2, which leads to

\alpha 2
i + \beta 2

i+1 = \| \~vi(1 :m)\| 2 + \| \~fi\| 2  - 2 \~fT
i \~vi(1 :m) - 2\alpha i\beta i+1u

T
i+1ui

\leq 1 +O(c1(m,n)\epsilon ),
(3.18)

where we have used (3.8). Similarly, we obtain

(3.19) \^\alpha 2
i +

\^\beta 2
i - 1 \leq 1 +O(c2(p,n)\epsilon ).

Therefore, we have proved the following lemma.
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390 ZHONGXIAO JIA AND HAIBO LI

Lemma 3.1. In finite precision, we have1

\| Bk\| \leq 
\surd 
2 max
1\leq i\leq k

(\alpha 2
i + \beta 2

i+1)
1/2 \leq 

\surd 
2 +O(c1(m,n)\epsilon ),(3.20)

\| \=Bk\| \leq 
\surd 
2 max
1\leq i\leq k

(\^\alpha 2
i +

\^\beta 2
i - 1)

1/2 \leq 
\surd 
2 +O(c2(p,n)\epsilon ).(3.21)

Theorem 3.4. With the hypothesis of Theorem 3.2, in finite precision, we have

QL
\widehat Vk = \widehat Uk

\widehat Bk + \widehat Fk,(3.22)

QT
L
\widehat Uk = \widehat Vk

\widehat BT
k + \^\beta k\^vk+1e

T
k + \widehat Gk,(3.23)

where

\| \widehat Fk\| =O(\| B - 1
k \| \epsilon ),(3.24)

\| \widehat Gk\| =O(c4(m,n,p, k)\epsilon )(3.25)

with

(3.26) c4(m,n,p, k) = (\| \widehat B - 1
k \| + 1)\| B - 1

k \| + c3(m,n,p)\| \widehat B - 1
k \| .

Proof. Recall the notation in (1.10), (2.5), and (1.6). Then exploiting
Theorem 3.1, we can rewrite (3.6) as

(0p\times m, Ip)\widehat Vk = \widehat Uk
\widehat Bk + \widehat Fk,

where

(3.27) \widehat Fk = \=Fk  - (0p\times m, Ip)(\widetilde Vk  - QVk)Dk.

Therefore, (3.22) holds.
From (3.14) and (3.15), we obtain

QT
AQAVk =QT

AUk+1Bk +QT
AFk

= (VkB
T
k + \alpha k+1vk+1e

T
k+1 +Gk+1)Bk +QT

AFk

= VkB
T
k Bk + \alpha k+1\beta k+1vk+1e

T
k +Gk+1Bk +QT

AFk.

(3.28)

Premultiplying and postmultiplying (3.22) by QT
L and Dk gives

QT
LQLVk = (QT

L
\widehat Uk

\widehat Bk +QT
L
\widehat Fk)Dk.

Summing the above two equalities and exploiting (3.16) yields

Vk = (QT
AQA +QT

LQL)Vk

= VkB
T
k Bk +QT

L
\widehat Uk

\widehat BkDk + \alpha k+1\beta k+1vk+1e
T
k + (Gk+1Bk +QT

AFk +QT
L
\widehat FkDk)

= Vk(Ik  - Dk
\widehat BT
k
\widehat BkDk +Ek) +QT

L
\widehat Uk

\widehat BkDk + \alpha k+1\beta k+1vk+1e
T
k

+ (Gk+1Bk +QT
AFk +QT

L
\widehat FkDk).

1Here we use the result of an exercise from [8, Chapter 6, Problem 6.14], which gives an upper
bound for the p-norm of a row/column sparse matrix.
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THE JBD METHOD IN FINITE PRECISION 391

Postmultiplying the last relation by Dk and exploiting (3.17), \widehat Vk = VkDk, and D2
k =

Ik, we obtain\widehat Vk
\widehat BT
k
\widehat Bk =QT

L
\widehat Uk

\widehat Bk + \alpha k+1\beta k+1vk+1e
T
kDk + (Gk+1Bk +QT

AFk +QT
L
\widehat FkDk + VkEk)Dk

=QT
L
\widehat Uk

\widehat Bk  - (\^\alpha k
\^\beta k + \gamma k)\^vk+1e

T
k + (Gk+1Bk +QT

AFk +QT
L
\widehat FkDk + VkEk)Dk,

which shows that

(3.29) QT
L
\widehat Uk = \widehat Vk

\widehat BT
k + \^\beta k\^vk+1e

T
k  - E1  - E2,

where

E1 = [(Gk+1Bk + VkEk)Dk  - \gamma k\^vk+1e
T
k ]

\widehat B - 1
k , E2 = (QT

AFkDk +QT
L
\widehat Fk) \widehat B - 1

k .

Notice that \gamma k in (3.17) satisfies | \gamma k| =O(\epsilon ) and that the elements of Ek in (3.16)
are O(c3(m,n,p)) in size. Making use of (3.3) and the upper bounds for \| Bk\| in
(3.20), we have

\| E1\| =O(\=c1(m,n,p, k)\epsilon )

with \=c1(m,n,p, k) = (
\surd 
2 + c3(m,n,p))\| \widehat B - 1

k \| . Using the expressions of Fk, \widehat Fk, and\widetilde Vk  - QVk in (3.13), (3.27), and (3.11), respectively, we obtain

QT
AFkDk +QT

L
\widehat Fk =

\bigl( 
QT

A QT
L

\bigr) \biggl( FkDk\widehat Fk

\biggr) 
=QT

\Bigl[ \biggl( \widetilde FkDk
\=Fk

\biggr) 
 - 
\biggl( 

Im 0m\times p

0p\times m Ip

\biggr) 
(\widetilde Vk  - QVk)Dk

\Bigr] 
=QT

\Bigl[ \biggl( \widetilde FkDk
\=Fk

\biggr) 
+ (Im+p  - QQT ) \widetilde GkB

 - 1
k Dk

\Bigr] 
.

Since

\| B - 1
k Dk

\widehat B - 1
k \| = \| ( \=BkBk)

 - 1\| \leq \| \=B - 1
k \| \| B - 1

k \| 

and \| \=B - 1
k \| = \| \widehat B - 1

k \| , it holds that

\| E2\| =O(\=c2(k)\epsilon )

with \=c2(k) = (\| \widehat B - 1
k \| + 1)\| B - 1

k \| . Letting \widehat Gk =  - E1  - E2 in (3.29) and substituting
the estimates on \| E1\| and \| E2\| leads to the desired result.

Notice that \| \widehat B - 1
k \| \geq 1. We see that \| \widehat Gk\| =O(\| \widehat B - 1

k \| \| B - 1
k \| \epsilon ) and, particularly,

\| \widehat Gk\| =O((\| \widehat B - 1
k \| + \| B - 1

k \| )\epsilon ), provided that the size of either one is not large. The

theorem indicates that the JBD process for computing \widehat Uk, \widehat Vk, and \widehat Bk is conditionally
equivalent to the standard upper Lanczos bidiagonalization of QL, whose rounding
error is always O(\| QL\| \epsilon ) =O(\epsilon ) in finite precision.

3.2. Loss of orthogonality of the basis vectors. Once the orthogonality is
lost at one iteration, the errors will propagate to later steps, which leads to the more
loss of orthogonality of subsequently computed basis vectors. As it will turn out, the
orthogonality levels of Uk+1, \widetilde Vk, and \widehat Uk are closely related. Below we prove how the
orthogonality level of \widehat Uk is affected by those of Uk+1 and \widetilde Vk.
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392 ZHONGXIAO JIA AND HAIBO LI

Theorem 3.5. With the hypothesis of Theorem 3.2, in finite precision, we have

(3.30) \eta (\widehat Uk)\leq \| \widehat B - 1
k \| 2

\bigl[ 
\eta (\widetilde Vk) + 2\eta (Uk+1) +O(c3(m,n,p)\epsilon )

\bigr] 
.

Proof. From (3.4) and (3.6), we have

\widetilde Vk =

\biggl( 
Uk+1Bk\widehat Uk

\=Bk

\biggr) 
+

\biggl( \widetilde Fk
\=FkDk

\biggr) 
,

which shows that

(3.31) \widetilde V T
k
\widetilde Vk =BT

k U
T
k+1Uk+1Bk + \=BT

k
\widehat UT
k
\widehat Uk

\=Bk +E3,

where

E3 =BT
k U

T
k+1

\widetilde Fk + \=BT
k
\widehat UT
k
\=FkDk + \widetilde FT

k Uk+1Bk +Dk
\=FT
k
\widehat Uk

\=Bk + \widetilde FT
k
\widetilde Fk +Dk

\=FT
k
\=FkDk.

From (3.16) and (3.31), we obtain

Ik  - \widetilde V T
k
\widetilde Vk =BT

k (Ik+1  - UT
k+1Uk+1)Bk + \=BT

k (Ik  - \widehat UT
k
\widehat Uk) \=Bk  - Ek  - E3,

which yields

(3.32) Ik  - \widehat UT
k
\widehat Uk = \=B - T

k

\bigl[ 
(Ik  - \widetilde V T

k
\widetilde Vk) - BT

k (Ik+1  - UT
k+1Uk+1)Bk +Ek +E3

\bigr] 
\=B - 1
k .

By (3.3), we have \| Uk+1\| \leq (1+\eta (Uk+1))
1/2 and \| \widehat Uk\| \leq (1+\eta (\widehat Uk))

1/2. Using the
bounds for \| Bk\| and \| \widehat Bk\| in (3.20) and (3.21), respectively, by a simple calculation,
we obtain

\| E3\| =O(\epsilon ).

Using the bound for \| Bk\| , we have

\| BT
k (Ik+1  - UT

k+1Uk+1)Bk\| \leq \| Bk\| 2\| Ik+1  - UT
k+1Uk+1\| 

\leq 2\| Ik+1  - UT
k+1Uk+1\| +O(c1(m,n)\epsilon ).

Taking norms in (3.32) proves the desired result.

This theorem indicates that provided \| \widehat B - 1
k \| = \| \=B - 1

k \| is not large, the orthogo-

nality of \widehat Uk is as good as those of Uk+1 and \widetilde Vk. Therefore, it is only necessary to
perform some sort of reorthogonalization strategies to maintain desired orthogonality
levels of Uk+1 and \widetilde Vk.

The following result shows that the orthogonality levels of the long \widetilde Vk \in \BbbR (m+p)\times k

and the short Vk \in \BbbR p\times k are the same within O(\epsilon ) under some mild condition.

Theorem 3.6. With definition (3.2), it holds that

(3.33) | \eta (\widetilde Vk) - \eta (Vk)| =O(\| B - 1
k \| 2\epsilon 2).

Proof. Since (Im+p  - QQT )2 = Im+p  - QQT , from (3.11), we have

\widetilde V T
k (Im+p  - QQT )\widetilde Vk = \widetilde V T

k (Im+p  - QQT )(Im+p  - QQT )\widetilde Vk

= (\widetilde Vk  - QVk)
T (Im+p  - QQT )(Im+p  - QQT )(\widetilde Vk  - QVk)

=B - T
k

\widetilde GT
k (Im+p  - QQT ) \widetilde GkB

 - 1
k .
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THE JBD METHOD IN FINITE PRECISION 393

Thus,

Ik  - V T
k Vk = Ik  - \widetilde V T

k QQT \widetilde Vk = Ik  - \widetilde V T
k
\widetilde Vk + \widetilde V T

k (Im+p  - QQT )\widetilde Vk

= (Ik  - \widetilde V T
k
\widetilde Vk) +B - T

k
\widetilde GT
k (Im+p  - QQT ) \widetilde GkB

 - 1
k .

Therefore, (3.33) holds.

This theorem shows that provided \| B - 1
k \| is not too large, say, no more than \epsilon  - 1/2,

we have | \eta (\widetilde Vk) - \eta (Vk)| =O(\epsilon ). Therefore, it is only necessary to maintain the same
orthogonality level of Vk in order to make \widetilde Vk achieve a desired orthogonality level.
From (3.30), we only need to maintain desired orthogonality levels of Uk+1 and Vk in
order to make \widehat Uk have a desired orthogonality level. In summary, for the four sets
of basis vectors generated by the JBD process, it generally suffices to reorthogonalize
Uk+1 and Vk.

4. The JBD method for the GSVD computation. In this section, we de-
scribe the JBD method for computing some extreme GSVD components of \{ A,L\} and
make an analysis on the convergence of the approximate generalized singular values
in finite precision by exploiting the previous results.

4.1. The JBD method. For ease of presentation, we do not take into account
rounding errors when computing the GSVD of \{ Bk, \=Bk\} or the SVD of Bk or \=Bk; that
is, we assume that the compact SVD of Bk is computed accurately,

(4.1) Bk = Pk\Theta kW
T
k , \Theta k = diag(c

(k)
1 , . . . , c

(k)
k ), 1\geq c

(k)
1 > . . . > c

(k)
k \geq 0,

where Pk = (p
(k)
1 , . . . , p

(k)
k ) \in \BbbR (k+1)\times k is orthonormal and Wk = (w

(k)
1 , . . . ,w

(k)
k ) \in 

\BbbR k\times k is orthogonal. The SVD (4.1) can be obtained by a standard SVD algorithm

since Bk is small. Then we have k approximate generalized singular values \{ c(k)i , (1 - 
(c

(k)
i )2)1/2\} , i= 1,2, . . . , k, of \{ A,L\} , and the approximate right generalized singular

vectors are the x
(k)
i = R - 1Vkw

(k)
i , and the approximations to the left generalized

singular vectors pAi are y
(k)
i = Uk+1p

(k)
i . Among these k approximations, we pick up

a few of the largest and/or smallest ones as approximations to the largest and/or
smallest ci/si and the corresponding xi and pAi .

If we also want to compute an approximation of the left generalized singular vector
pLi , we need to compute the SVD of \=Bk. From (2.7), it is known that (BT

k ,
\=BT
k )

T is
column orthonormal. Therefore, the CS decomposition of the pair \{ Bk, \=Bk\} is its
GSVD, and the right singular vectors of Bk and \=Bk are identical. As a result, we can
assume that the SVD of \=Bk is

(4.2) \=Bk = \=Pk\Psi kW
T
k , \Psi k =diag(\=s

(k)
1 , . . . , \=s

(k)
k ), 0\leq \=s

(k)
1 < . . . < \=s

(k)
k \leq 1,

where \=Pk = (\=p
(k)
1 , . . . , \=p

(k)
k ) \in \BbbR k\times k and Wk = (w

(k)
1 , . . . ,w

(k)
k ) \in \BbbR k\times k are orthogonal.

Then z
(k)
i = \widehat Uk \=p

(k)
i , i = 1,2, . . . , k are approximate left generalized singular vectors

for L. The approximate generalized singular values and the corresponding approx-
imate right generalized singular vectors are \{ (1  - (\=s

(k)
i )2)1/2, \=s

(k)
i \} and R - 1Vkw

(k)
i ,

respectively.
Alternatively, we compute the GSVD of the pair \{ Bk, \=Bk\} ,

(4.3) Bk = PkCkW
T
k , \=Bk = \=PkSkW

T
k ,

where Ck =diag(c
(k)
1 , . . . , c

(k)
k ) and Sk =diag(s

(k)
1 , . . . , s

(k)
k ) and Pk and \=Pk are as those

defined in (4.1) and (4.2). The approximate generalized singular values are \{ c(k)i , s
(k)
i \} 
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394 ZHONGXIAO JIA AND HAIBO LI

or c
(k)
i /s

(k)
i ; the corresponding left approximate generalized singular vectors for A

and L are Uk+1p
(k)
i and \widehat Uk \=p

(k)
i , respectively; and the right approximate generalized

singular vectors are x
(k)
i =Zkw

(k)
i =R - 1Vkw

(k)
i .

For the computation of x
(k)
i , it is shown in [37] that the explicit inversion R - 1

can be avoided by noticing that

(4.4)

\biggl( 
A
L

\biggr) 
x
(k)
i =QRR - 1Vkw

(k)
i = \widetilde Vkw

(k)
i .

Then, solving the corresponding consistent linear system by an iterative solver, e.g.,
the LSQR algorithm, we obtain x

(k)
i .

4.2. Convergence, accuracy, and reorthogonalization. We investigate the
convergence of the computed generalized singular values of the JBD method. We only
focus on the approach of using the SVD of Bk. The same analysis and results hold for
the approaches of using the SVD of \=Bk and the GSVD of \{ Bk, \=Bk\} . Since c2i +s2i = 1,
in order to compute the generalized singular value \{ ci, si\} , we only need to compute

ci, which is a singular value of QA. Note that c
(k)
i , the singular value of Bk, is a

computed Ritz value of QA since the k-step JBD process for computing Bk is Lanczos
bidiagonalization applied to QA with the rounding error O(\| B - 1

k \| \epsilon ); see Theorem 3.2.
In exact arithmetic, the eigenvalues of BT

k Bk are the Ritz values of QT
AQA with respect

to the Krylov subspace generated by QT
Ab, (Q

T
AQA)Q

T
Ab, . . . , (Q

T
AQA)

k - 1QT
Ab, and the

k-step lower bidiagonalization of QA is equivalent to the symmetric Lanczos process
applied to QT

AQA and the starting vector QT
Ab/\| QT

Ab\| . Therefore, the convergence
theory of the symmetric Lanczos method applies (cf. [28, 30]), and the singular
values of Bk generally favor some of the largest and smallest ones of QA. More
convergence results and details have been given in [10, 11, 16]. In finite precision,
typical convergence features of the symmetric Lanczos method carry over to our case.

In finite precision, because of the loss of orthogonality of basis vectors, some
of the singular values of Bk could be numerically multiple as the iteration number
k increases, which may produce ghost approximations to some generalized singular
values of \{ A,L\} . A direct consequence is that a simple or genuine multiple generalized
singular value of \{ A,L\} could be approximated by numerically multiple computed
Ritz values, which could lead to a convergence delay of computed Ritz values. These
phenomena can be avoided by using some types of reorthogonalization strategies, such
as full reorthogonalization or the more efficient one-sided reorthogonalization [33].

By Theorem 3.2, the JBD process for computing Bk is the lower Lanczos bidiag-
onalization of QA with the rounding error O(\| B - 1

k \| \epsilon ), which is comparable to O(\epsilon )
whenever the size of \| B - 1

k \| is modest. If the JBD process is implemented with one-
sided reorthogonalization of vi such that the orthogonality level of Vk achieves O(\epsilon ),
exploiting the backward error results on the Lanczos bidiagonalization with one-sided
reorthogonalization [2, Theorem 5.2 and Corollary 5.1], we can deduce that the com-
puted Bk is the exact one generated by the Lanczos bidiagonalization of a nearby
matrix QA + Ek with \| Ek\| = O(\| B - 1

k \| \epsilon ). Therefore, by the perturbation theory
of the singular values [5, Corollary 8.6.2], the extreme singular values of QA can be
computed with the ultimate accuracy O(\| B - 1

k \| \epsilon ).
The following theorem is due to the authors of [13], which relaxes the requirement

on the full orthogonality of basis vectors.

Theorem 4.1. Assume that the compact QR factorizations of Uk+1 and Vk are
Uk+1 =Mk+1Rk+1 and Vk =NkSk, where the diagonals of Rk+1 and Sk are positive,
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THE JBD METHOD IN FINITE PRECISION 395

and let \delta =O(\| B - 1
k \| \epsilon ). If Uk+1 and Vk satisfy the semiorthogonality

(4.5) \xi (Uk+1), \xi (Vk)\leqslant 
\sqrt{} 

\delta /(2k+ 1),

then

(4.6) MT
k+1QANk =Bk + \widetilde Ek,

where the elements of \widetilde Ek are O(\delta ) =O(\| B - 1
k \| \epsilon ) in size.2

Notice that MT
k+1QANk is precisely the Ritz--Galerkin projection matrix of QA

with respect to the left and right subspaces span(Uk+1) and span(Vk), whose singular
values are the true Ritz values of QA with respect to these two subspaces, while the
singular values of Bk are the computed Ritz values when semiorthogonality is met.
Theorem 4.1 indicates that once the orthogonality levels of Uk+1 and Vk are below
(\delta /(2k+1))1/2, the computed Ritz values are close to those true ones within O(\epsilon ), pro-
vided that \| B - 1

k \| is modest. Since the true Ritz values are never ghosts, provided that
no breakdown occurs before iteration k, we avoid the appearance of ghost-computed
Ritz values whenever Uk+1 and Vk have semiorthogonality. Consequently, as long as
true Ritz values are approximations to some singular values of QA with the accuracy
O(\| B - 1

k \| \epsilon ), the corresponding computed Ritz values have the same approximation
accuracy too. In the meantime, it is easily justified that, when Uk+1 and Vk have full
orthogonality levels O(\epsilon ), Theorem 4.1 holds with the norm of the error matrix in
the right-hand side still being O(\| B - 1

k \| \epsilon ). Therefore, the semiorthogonality of Uk+1

and Vk suffices for computing generalized singular values accurately. We have made
a detailed investigation on the JBD process with semiorthogonalization strategy and
proposed an efficient partial reorthogonalization strategy in [13].

There is a corresponding counterpart of Theorem 4.1 for \=Bk, as stated below.

Theorem 4.2. Let \^\delta =O(c4(m,n,p, k)\epsilon ) with c4(m,n,p, k) defined by (3.26) and

the compact QR factorizations of \widehat Uk and Vk be \widehat Uk = \widehat Mk
\widehat Rk and Vk = NkSk, where

the diagonals of \widehat Rk and Sk are positive. If \widehat Uk and \widehat Vk satisfy the semiorthogonality

\xi (\widehat Uk), \xi (Vk)\leqslant 
\sqrt{} 

\^\delta /(2k+ 1),

then

\widehat MT
k QLNk = \=Bk + \=Ek,

where the elements of \=Ek are O(\^\delta ) =O(\| B - 1
k \| \| \=B - 1

k \| \epsilon ) in size.

Comparing Theorem 4.2 with Theorem 4.1, we find that Theorem 4.2 requires
that the sizes of \| B - 1

k \| and \| \=B - 1
k \| be controllable, stronger than Theorem 4.1 does.

4.3. Residual norm and stopping criterion. Now we concentrate on de-
signing an effective and efficient stopping criterion for the GSVD computation based

2In Theorem 5 of Larsen [19], the right-hand side of (4.5) is
\sqrt{} 

\delta /k instead of
\sqrt{} 

\delta /(2k+ 1),
but Larsen does not justify it rigorously. In fact, this result is a corresponding counterpart of [31,
Theorem 4]. Since the k-step Lanczos bidiagonalization of QA with the starting vector b is equivalent

to the (2k+1)-step symmetric Lanczos process [3, section 7.6.1] of \=C = ( 0
QT

A

QA
0

) with the starting

vector \=b= ( b
0
), which holds not only in exact arithmetic but also in finite precision, the denominator

in (4.5) should be 2k+ 1.
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396 ZHONGXIAO JIA AND HAIBO LI

on the JBD process. Still, we only assume rounding errors in the JBD process and
suppose that the other computations are exact.

It is known (e.g., [36]) that the GSVD (1.1) of \{ A,L\} is mathematically equivalent
to the generalized eigenvalue problem s2iA

TAxi = c2iL
TLxi. Based on this equivalence,

Zha in [37] uses the residual norm

(4.7) \| r(k)i \| = \| ((s(k)i )2ATA - (c
(k)
i )2LTL)x

(k)
i \| 

to design a stopping criterion for an approximate generalized singular value pair
\{ c(k)i , s

(k)
i \} and the corresponding right vector x

(k)
i , where (c

(k)
i )2+(s

(k)
i )2 = 1. Clearly,

the computation of \| r(k)i \| is expensive since it needs to compute x
(k)
i explicitly by

solving the large-scale problem (4.4) at each iteration k until the convergence occurs.
In exact arithmetic, Zha [37] has established a sharp bound,

(4.8) \| r(k)i \| \leq \| R\| \alpha k+1\beta k+1| eTkw
(k)
i | ,

with R defined in (1.3), so that \| R\| \alpha k+1\beta k+1| eTkw
(k)
i | can be used to design a stopping

criterion if \| R\| or its reasonable estimate is available. From (1.3), for C = (AT ,LT )T ,

we have \| R\| = \| C\| = \sigma max(C), the largest singular value of C. Therefore,
\| r(k)

i \| 
\| R\| can

be regarded as a relative residual norm of the approximate eigenvalue (c
(k)
i /s

(k)
i )2 and

eigenvector x
(k)
i of s2iA

TAi = c2iL
TLxi. In finite precision, we can obtain the following

upper bound for \| r(k)i \| .
Theorem 4.3. Suppose that the inner least squares problem (2.1) is solved accu-

rately and that x
(k)
i =R - 1Vkw

(k)
i is the approximate right generalized singular vector

by the JBD method. Then it holds that

(4.9)
\bigm\| \bigm\| [(s(k)i )2ATA - (c

(k)
i )2LTL]x

(k)
i

\bigm\| \bigm\| \leq \| R\| 
\Bigl( 
\alpha k+1\beta k+1| eTkw

(k)
i | +O(\| B - 1

k \| \epsilon )
\Bigr) 
.

Proof. From (3.28), we have

QT
AQAVk = VkB

T
k Bk + \alpha k+1\beta k+1vk+1e

T
k +Gk+1Bk +QT

AFk.

From (4.1), we have

BT
k Bk =Wk\Theta 

2
kW

T
k .

Notice that (s
(k)
i )2 = 1 - (c

(k)
i )2 and x

(k)
i =R - 1Vkw

(k)
i . Using the above two relations

and (1.3), we obtain\Bigl( 
(s

(k)
i )2ATA - (c

(k)
i )2LTL

\Bigr) 
x
(k)
i =

\Bigl( 
ATA - (c

(k)
i )2(ATA+LTL)

\Bigr) 
R - 1VkWkei

=RT
\Bigl( 
QT

AQAVkWk  - (c
(k)
i )2VkWk

\Bigr) 
ei

=RT
\Bigl( 
\alpha k+1\beta k+1vk+1e

T
kw

(k)
i + (Gk+1Bk +QT

AFk)w
(k)
i

\Bigr) 
,(4.10)

where ei is the ith column of Ik. From Theorem 3.2, we have

\| (Gk+1Bk +QT
AFk)w

(k)
i \| =O(\| B - 1

k \| \epsilon ).

Therefore, by taking norms in (4.10), we prove the desired result.

Recall the QR factorization (1.3) of C. If we perform Lanczos bidiagonalization
on C several steps, then the largest Ritz value is a reasonably good lower bound for
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THE JBD METHOD IN FINITE PRECISION 397

\sigma 1(C). However, we should remind the reader that a roughly good upper bound for
\| C\| suffices for our use here. Notice

\| R\| 2 = \| C\| 2 = \| CTC\| \leq \| ATA\| + \| LTL\| \leq \| A\| 1\| A\| \infty + \| L\| 1\| L\| \infty ,

where \| \cdot \| 1 and \| \cdot \| \infty denote the 1-norm and the infinity norm, which is cheap to
compute when A and L are explicitly stored in a certain sparse format. We then take
the square root of the above right-hand side as an estimate for \| R\| . Alternatively, it
is simpler to use \| C\| 1 \leq \| A\| 1+\| L\| 1 or \| C\| \infty =max\{ \| A\| \infty ,\| L\| \infty \} as a replacement

of \| R\| . Suppose that \| B - 1
k \| = O(1). Since eTkw

(k)
i is available from the SVD of Bk

or \=Bk or the GSVD of \{ Bk, \=Bk\} , the quantity | \| R\| \alpha k+1\beta k+1| eTkw
(k)
i | can be used as

a reliable stopping criterion, provided that the stopping tolerance for the (relative)
residual norm is not required to achieve the level of \epsilon . Computationally, we benefit
very much from this criterion since we avoid the explicit computation of x

(k)
i before

the convergence. We will numerically confirm the reliability of the criterion.

5. Numerical experiments. We report numerical experiments to justify the
results obtained, except Theorem 3.3, which has been numerically confirmed in [13].
All the numerical experiments were performed on an Intel Core i7-7700 CPU at
3.60GHz with a main memory of 8GB using Matlab R2017a with the machine pre-
cision \epsilon = 2.22 \times 10 - 16 under the Miscrosoft Windows 10 64-bit system. For each
matrix pair \{ A,L\} , we use b = (1, . . . ,1)T \in \BbbR m as the starting vector of the JBD
process, and each inner least squares problem (2.1) is solved accurately by computing
the QR factorization (1.3) and QQTw for a given w.

5.1. Examples for the JBD process in finite precision. We choose four
matrix pairs to confirm the numerical behavior of the JBD process in finite precision.
We construct the first pair \{ Ac,Ls\} as follows: Take n= 800 and CA = diag(c), SL =

diag(s), where c = (
3n

2
,
3n

2
 - 1, . . . ,

n

2
+ 1)/2n and s = (

\sqrt{} 
1 - c21, . . . ,

\sqrt{} 
1 - c2n). Let

D be the symmetric orthogonal matrix generated by the Matlab built-in function
D=gallery(`orthog',n,2). We then define A = CAD and L = SLD. By construc-
tion, the ith generalized singular value of \{ A,L\} is \{ ci, si\} , the corresponding right
vector xi is the ith column of D, and the left generalized singular vectors pAi and pLi
are the ith column ei of In, i= 1, . . . , n. The remaining three pairs use sparse matrices
from [4], where

(5.1) L=L1 =

\left(     
1  - 1

1  - 1
. . .

. . .

1  - 1

\right)     \in \BbbR (n - 1)\times n

with n= 712, which is the scaled discrete approximation of the first order derivative
operator, and L = Ln = diag(l) with l = (2n,2n  - 1, . . . , n + 1)/1000, n = 3969.
Some properties of the four test matrix pairs are described in Table 1, where \kappa (A) =
\| A\| \| A\dagger \| is the condition number of A.

Figure 1 depicts the growths of \| Fk\| and \| Gk+1\| in (3.14) and (3.15) as the
iteration number k increases from 1 to 150. By Theorem 3.2, we take O(\| B - 1

k \| \epsilon ) =
10\| B - 1

k \| \epsilon . For the four test problems, it is seen from Figures 1(a)--1(d) that \| Fk\| 
grows very slowly as k increases. For the four matrix pairs, O(\| B - 1

k \| \epsilon ) is indeed a
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398 ZHONGXIAO JIA AND HAIBO LI

Table 1
Properties of the test matrices.

A m\times n \kappa (A) L p\times n \kappa (L)

Ac 800\times 800 2.99 Ls 800\times 800 1.46

well1850 1850\times 712 111.31 L1 711\times 712 453.27

rdb2048 2048\times 2048 2026.80 dw2048 2048\times 2048 5301.50

c-23 3969\times 3969 22795.9 Ln 3969\times 3969 1.9995
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Fig 1. Estimated error bound for \| Fk\| : (a) \{ Ac, Ls\} ; (b) \{ well1850, L1\} ; (c) \{ rdb2048,
dw2048\} ; (d) \{ c-23, Ln\} .

very good upper bound for \| Fk\| within ten times, and the growth trends of \| Fk\| 
and \| B - 1

k \| are similar. This indicates that the growth of \| Fk\| is mainly affected
by the growth of \| B - 1

k \| . Since QQT \~ui is explicitly computed at each step in our
experiments, \| Gk+1\| =O(\epsilon ) remains almost unchanged.

Figure 2 depicts the growths of \| \widehat Fk\| and \| \widehat Gk\| in (3.22) and (3.23). By Theorem
3.4, we takeO(\| B - 1

k \| \epsilon ) = 10\| B - 1
k \| \epsilon andO((\| B - 1

k \| +\| \widehat B - 1
k \| )\epsilon ) = 10(\| B - 1

k \| +\| \widehat B - 1
k \| )\epsilon ,

respectively. From the figures, we see that O(\| B - 1
k \| \epsilon ) and O((\| B - 1

k \| +\| \widehat B - 1
k \| )\epsilon ) are

indeed reasonable upper bounds for \| \widehat Fk\| and \| \widehat Gk\| , and the growths of \| \widehat Fk\| and
\| \widehat Gk\| are critically affected by those of \| B - 1

k \| and \| B - 1
k \| +\| \widehat B - 1

k \| , respectively. For

the four matrix pairs, \| B - 1
k \| always grows slowly, but \| \widehat B - 1

k \| = \| \=B - 1
k \| grows faster

for \{ well1850, L1\} than for the other three pairs. This is because L1 is truly flat,
and the smallest singular value of \=Bk approaches zero as k increases, causing that
\| \=B - 1

k \| is ultimately very large, as we have shown after Theorem 3.2. In contrast, the
smallest singular value of \=Bk converges to the nonzero smallest one of L for the other
three matrix pairs, and \| \=B - 1

k \| is uniformly bounded by the reciprocal of the smallest
singular value of L.
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Fig 2. \| \widehat Fk\| and \| \widehat Gk\| as well as estimated error bounds for them: (a) \{ Ac, Ls\} ; (b) \{ well1850,
L1\} ; (c) \{ rdb2048, dw2048\} ; (d) \{ c-23, Ln\} .
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Fig 3. The orthogonality level \eta (\widehat Uk) and its upper bound: (a) \{ Ac, Ls\} ; (b) \{ well1850, L1\} ;
(c) \{ rdb2048, dw2048\} ; (d) \{ c-23, Ln\} .

Figure 3 depicts the orthogonality level \eta (\widehat Uk) as k increases from 1 to 150. The
upper bound for \eta (\widehat Uk) is (3.30), and we use 10\epsilon as an estimate for O(c3(m,n,p)\epsilon ).
We observe that the orthogonality of \widehat Uk is lost gradually. Particularly, for the test
problem \{ rdb2048, dw2048\} , the columns of \widehat Uk lose orthogonality completely and
become numerically linearly dependent after k = 100. The growth trends of \eta (\widehat Uk)
and its bound resemble, meaning that the orthogonality level of \widehat Uk is affected not
only by \eta (Uk) and \eta ( \~Vk) but also by \| \widehat B - 1

k \| .
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400 ZHONGXIAO JIA AND HAIBO LI

5.2. Examples for the GSVD computation. We illustrate the performance
of the JBD method for computing a few extreme GSVD components of \{ A,L\} and jus-
tify the upper bound in (4.9). Whenever reorthogonalization is used, we mean the full
reorthogonalizations of all the sets of basis vectors. For effective partial reorthogonal-
ization of selected ones, we refer the reader to [13], where the numerical experiments
have confirmed Theorems 4.1--4.2 when the basis vectors are only semiorthogonal.

Example 1. We show the convergence of the singular values of Bk. Take m= n=
p= 500. We construct a row vector c= (c1, . . . , cn) with

lmax = 4, lmin = 2, c(1:l\mathrm{m}\mathrm{a}\mathrm{x}) = linspace(0.99,0.7, lmax),

c(n - l\mathrm{m}\mathrm{i}\mathrm{n}+1:n) = linspace(0.10,0.01, lmin),

c(l\mathrm{m}\mathrm{a}\mathrm{x}+1:n - l\mathrm{m}\mathrm{i}\mathrm{n}) = linspace(0.65,0.15, n - lmax  - lmin)

and

s= (
\sqrt{} 

1 - c21, . . . ,
\sqrt{} 
1 - c2n),

where linspace is the Matlab built-in function. We then define CA = diag(c),
SL = diag(s), and D = gallery(`orthog',n,2) and take A = CAD and L = SLD.
By construction, \kappa (A) = 6.6000, \kappa (L) = 7.0888, and the ith large generalized singular
value pair of \{ A,L\} is \{ ci, si\} .

Figure 4 depicts the convergence processes of the first four largest and two smallest
Ritz values computed by the SVD of Bk, which correspond to the four largest and two
smallest generalized singular values of \{ A,L\} , respectively, where we implemented the
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Fig 4. Convergence of Ritz values computed by the SVD of Bk: (a) the first four largest Ritz
values without reorthogonalization; (b) the first four largest Ritz values with full reorthogonalization;
(c) the first two smallest Ritz values without reorthogonalization; (d) the first two smallest Ritz values
with full reorthogonalization.
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Fig 5. Convergence of Ritz values computed by the SVD of \=Bk: (a) the first four smallest Ritz
values without reorthogonalization; (b) the first four smallest Ritz values with full reorthogonaliza-
tion.

JBD process without and with reorthogonalization. The right vertical line indicates
the values of ci for i= 1, . . . ,500, and the left and right panels exhibit the convergence
behavior of the JBD method without and with reorthogonalization. We observe from
Figure 4(a) that each of the converged second to fourth Ritz values suddenly jumps
to become a ghost and then converges to the next large singular values after several
iterations. Such a phenomenon repeats several times and corresponds to the appear-
ance of spurious copies each time. More precisely, as Figure 4(a) indicates, the four
largest Ritz values gradually become numerically multiple and ultimately converge
to the largest singular value of QA as k increases. Similarly, as Figure 4 (c) shows,
the second smallest Ritz value first converges to the second smallest singular value of
QA, then starts to converge to the first smallest one and ultimately is numerically the
same as the first converged Ritz value.

However, when the JBD process is performed with full reorthogonalization, the
convergence of the Ritz values changes and becomes regular, as Figures 4(b) and
4(d) indicate. In the right panels, the convergence behavior is much simpler and
is in accordance with the theoretical results in exact arithmetic. It is clear that a
simple generalized singular value is approximated by a single Ritz value and that
no ghosts appear. We also observe that the large Ritz values converge more quickly
than relatively interior Ritz values; that is, the Ritz values closer to the rightmost
generalized singular values stabilize more early, which confirms the theory that the
JBD method generally favors the extreme generalized singular values.

Figure 5 depicts the convergence processes of the first four smallest Ritz values
computed by the SVD of \=Bk, which corresponds to the first four largest general-
ized singular values of \{ A,L\} . The right vertical line indicates the values of si for
i= 1, . . . ,500. From Figure 5(a), we observe the ``ghost"" phenomenon that some con-
verged Ritz values suddenly jump and then converge to the next small singular values
of QL after several iterations. The convergence phenomena are similar to Figures 4(a)
and 4(c). Figure 5(b) shows the convergence of Ritz values with full reorthogonaliza-
tion, from which it is clear that the JBD method converges regularly and that there
are no spurious copies. Figure 5(b) demonstrates that the JBD method favors the
extreme generalized singular values.

Example 2. We investigate the convergence of the approximate generalized sin-
gular values and vectors of \{ A,L\} , which are computed by using both the SVDs of
Bk and \=Bk and the GSVD of \{ Bk, \=Bk\} . We test two matrix pairs. The first pair
is the problem in Example 1, and the second matrix pair \{ \sansd \sansw \sanstwo \sansfive \sanssix \sansA ,\sansd \sansw \sanstwo \sansfive \sanssix \sansB \} is an
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Fig 6. Growths of \| B - 1
k \| and \| \widehat B - 1

k \| : (a), (b) \{ A500, L500\} in Example 1; (c), (d)
\{ dw256A,256B\} in Example 2.

electromagnetic problem with m = n = p = 512 from the non-Hermitian Eigenvalue
Problem Collection in the Matrix Market,3 where \kappa (A) = 11490.4 and \kappa (L) = 3.7328.

We use the JBD method with full reorthogonalization to compute the largest gen-
eralized singular value and vectors. Instead of the SVD of the individual Bk or \=Bk,
we compute the SVDs of Bk and \=Bk simultaneously and take \{ c(k)1 , \=s

(k)
1 \} to approx-

imate \{ c1, s1\} , where c
(k)
1 is the largest singular value of Bk and \=s

(k)
1 is the smallest

singular value of \=Bk. The approximations to the right and left generalized singular
vectors x1 and pA1 are computed from the SVD of Bk, and the approximation to the
left generalized singular vectors pL1 is computed from the SVD of \=Bk. Alternatively,

we also compute the GSVD of \{ Bk, \=Bk\} and obtain the approximation \{ c(k)1 , s
(k)
1 \} to

\{ c1, s1\} and the approximations x
(k)
1 , y

(k)
1 , z

(k)
1 to x1, p

A
1 , p

L
1 .

We use the angle error

sin\theta k = | \=s(k)1 c1  - s1c
(k)
1 | or | s(k)1 c1  - s1c

(k)
1 | 

to measure the error between \{ c(k)1 , \=s
(k)
1 \} or \{ c(k)1 , s

(k)
1 \} and \{ c1, s1\} [35], where \theta k

denotes the angle between the vectors (c1, s1)
T and (c

(k)
1 , \=s

(k)
1 )T or (c

(k)
1 , s

(k)
1 )T . For

the corresponding generalized singular vectors, we measure the errors

sin\angle (x1, x
(k)
1 ), sin\angle (pA1 , y

(k)
1 ), sin\angle (pL1 , z

(k)
1 ).

Figures 6(a), 6(b), and 6(d) show that \| B - 1
k \| and \| \widehat B - 1

k \| stabilize in several iter-

ations, showing that the smallest singular values of Bk and \widehat Bk have converged to the
smallest positive ones of QA and QL, respectively, as commented after Theorem 3.2.

Figure 7 draws the approximation processes of the approximate generalized sin-
gular values and vectors obtained by the SVDs of Bk and \=Bk as k increases, while
Figure 6 depicts the growths of \| B - 1

k \| and \| \widehat B - 1
k \| . We have found that \| B - 1

k \| and

3https://math.nist.gov/MatrixMarket.
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Fig 7. Convergence processes of the approximate GSVD components: (a) \{ A500, L500\} in
Example 1; (b) \{ \sansd \sansw \sanstwo \sansfive \sanssix \sansA ,\sansd \sansw \sanstwo \sansfive \sanssix \sansB \} in Example 2.
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Fig 8. Convergence processes of the approximate GSVD components based on the GSVD of
\{ Bk, \=Bk\} : (a) \{ A500, L500\} in Example 1; (b) \{ \sansd \sansw \sanstwo \sansfive \sanssix \sansA ,\sansd \sansw \sanstwo \sansfive \sanssix \sansB \} .

\| \widehat B - 1
k \| grow quite slowly and are very modest for Example 1 when k = 1 \sim 150 and

for Example 2 when k = 1\sim 150, respectively. We have also seen from Figure 7 that
the computed Ritz value converges to the the largest generalized singular value with
accuracy (\epsilon ). This confirms Theorems 4.1--4.2 and the comments on them.

Figure 8 depicts the convergence processes of approximate GSVD components
computed by the GSVD of \{ Bk, \=Bk\} . In this figure, we also draw the curves of resid-
ual norms. Clearly, the computed results are very similar to those obtained by the
SVDs of Bk and \=Bk until the errors reach the level of \epsilon . Therefore, the approximate
GSVD components converge regularly, the JBD method converges fast, and all the
errors achieve the level of \epsilon after 20 iterations for Example 1. For the GSVD of
\{ \sansd \sansw \sanstwo \sansfive \sanssix \sansA ,\sansd \sansw \sanstwo \sansfive \sanssix \sansB \} , the JBD method computes the largest GSVD component quite
accurately, and the relative residual norm reaches 10 - 8 after 100 iterations and sta-
bilizes at O(\epsilon ) after 125 iterations.

Example 3. We show the residual norm and its upper bound (4.9). The matrix
pair \{ A,L\} is chosen to be \{ A800,L800\} in Table 1, and we use the largest singular
value of Bk to compute an approximation to the largest generalized singular value.
From the construction, we have \| (AT

800,L
T
800)

T \| = 1, and the largest generalized
singular value is \{ c1, s1\} , where c1 = 0.75 and s1 =

\sqrt{} 
1 - c21.

In Figure 9, we draw the convergence histories of the approximate largest gen-
eralized singular value and the residual norm as well as those of the approximate
generalized singular values by using both the angle error and relative error.

| c(k)1 /s
(k)
1  - c1/s1| /(c1/s1).
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Fig 9. Convergence history of the approximate largest generalized singular value of \{ A800,L800\} :
(a) residual norm and its upper bound; (b) angle error and relative error.

From Figure 9(b), It is found that the approximate largest generalized singular

value c
(k)
1 /s

(k)
1 converges to c1/s1 with the ultimate relative error O(\epsilon ). This justifies

the comments after Theorem 4.1. As is expected, the angle errors and relative errors
resemble very much since c1/s1 =O(1). We observe from Figure 9(a) that the residual
norm and its upper bound are almost the same as k increases. The true residual norm
decays until the level of \epsilon , but the estimated upper bound stagnates at the level that
is a little bit higher than \epsilon since the upper bound for \| r(k)i \| has a term O(\| B - 1

k \| \epsilon ),
which is considerably bigger than \epsilon when \| B - 1

k \| > 1 considerably. For the case that
\| B - 1

k \| remains modest, the term O(\| B - 1
k \| \epsilon ) plays no role in the upper bound until

the bound reaches O(\epsilon ). Therefore, the upper bound \| R\| \alpha k+1\beta k+1| eTkw
(k)
i | can be

used as a reliable stopping criterion for the JBD algorithm. We point out that, in large
matrix computations, a (relative) stopping tolerance is usually O(\epsilon 1/2). Therefore,

provided that \| B - 1
k \| \leq O(\epsilon  - 1/2), our upper bound is a reliable estimate for \| r(k)i \| .

6. Conclusions and future work. We have made a numerical analysis of the
JBD process on \{ A,L\} in finite precision and established close relationships between
it and respective lower and upper Lanczos bidiagonalizations of QA and QL. The
results have shown that the k-step JBD process for computing Uk+1, Vk, and Bk is
equivalent to the lower Lanczos bidiagonalization of QA with the error \delta =O(\| B - 1

k \| \epsilon )
and for computing \widehat Uk+1, Vk, and \widehat Bk is equivalent to the upper Lanczos bidiagonal-
ization of QL with the error \^\delta =O(\| B - 1

k \| \| \widehat B - 1
k \| \epsilon ). We have investigated the loss of

orthogonality of the computed basis vectors and established a relationship between
the orthogonality levels \xi (\widetilde Vk) and \xi (Vk) and an upper bound for the orthogonality
level \eta (\widehat Uk), showing that \eta (\widehat Uk) is controlled by \eta (Uk+1), \eta (Vk) and \| \widehat B - 1

k \| .
We have described a JBD method that computes approximate generalized singu-

lar values and vectors of \{ A,L\} and considered the convergence and accuracy of the
approximate generalized singular values. The results have indicated that the general-
ized singular values of Bk and \=Bk are as accurate as the true Ritz values of QA and QL

with respect to the given subspaces within \scrO (\epsilon ), provided that the basis vectors have
semiorthogonality levels and Bk and \=Bk are not ill conditioned. Under these condi-
tions, it is only necessary to maintain the desired semiorthogonality in order to obtain
the approximate GSVD components with the same accuracy as those obtained by the
JBD method with full reorthogonalization. An efficient partial reorthogonalization
strategy has been proposed in [13] for this purpose.

In the meantime, we have established a compact upper bound for the residual
norm \| r(k)i \| of an approximate generalized singular value and approximate right
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generalized singular vector in finite precision and shown that it can be used as a
cheap and reliable stopping criterion without explicitly computing the approximate
right generalized singular vector until the convergence occurs. Finally, we have re-
ported numerical experiments to justify the results obtained and assertions.

There remain some important issues. For instance, due to the limitation of stor-
age, it is generally necessary to restart the JBD method. A commonly used restarting
technique is the implicit restarting proposed in [34] for the eigenvalue problem and
adapted to the SVD computation in [14, 15, 20]. How to adapt the implicit restart
to the JBD method and develop efficient algorithms is very significant. Also, notice
that the residual norm (4.7) is used to measure the convergence of the JBD method,

which is the residual norm of an approximate generalized eigenpair ((c
(k)
i /s

(k)
i )2, x

(k)
i )

of s2iA
TAxi = c2iL

TLxi and does not take into account approximate left generalized

singular vectors y
(k)
i for A and z

(k)
i for L. Indeed, the convergence and accuracy of

approximate right and two left generalized singular vectors may differ greatly for some
problems, so do two approximate left ones. Therefore, a more reliable and general-
purpose criterion should take into consideration the approximate generalized singular
value pair and corresponding right and two left singular vectors and measure their
residual norm as an approximate generalized singular component of the original GSVD
of the matrix pair \{ A,L\} . That is, it is much more proper to measure the residual

norm of the approximate GSVD components (c
(k)
i , s

(k)
i , x

(k)
i , y

(k)
i , z

(k)
i ), which, by the

definition (1.2) of GSVD of \{ A,L\} , is

\| r(k)i,new\| =
\sqrt{} 
\| Ax

(k)
i  - c

(k)
i y

(k)
i \| 2 + \| Lx(k)

i  - s
(k)
i z

(k)
i \| 2 + \| s(k)i AT y

(k)
i  - c

(k)
i LT z

(k)
i \| 2.

For the JBD method, the first two terms in the square root are zeros, leading to

\| r(k)i,new\| = \| s(k)i AT y
(k)
i  - c

(k)
i LT z

(k)
i \| .

Therefore, one can compute it directly without involving the approximate right gen-
eralized singular vector x

(k)
i . Similarly to the derivations of (4.8) and (4.9), one can

establish sharp upper bounds for \| r(k)i,new\| in exact arithmetic and in finite precision,

which do not need to compute the approximate left generalized singular vector y
(k)
i

and z
(k)
i before the occurrence of convergence, and, meanwhile, save the matrix-vector

products AT y
(k)
i and LT z

(k)
i . As a result, one can design an efficient general-purpose

stopping criterion for the JBD method. These issues are not focuses of this paper,
and we do not give details on them.
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