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Abstract
We consider the linear least squares problem with linear equality constraints (LSE
problem) formulated as minx∈Rn‖Ax − b‖2 s.t. Cx = d. Although there are some
classical methods available to solve this problem, most of them rely on matrix factor-
izations or require the null space of C, which limits their applicability to large-scale
problems. To address this challenge, we present a novel analysis of the LSE problem
from the perspective of operator-type least squares (LS) problems, where the linear
operators are induced by {A,C}. We show that the solution of the LSE problem can be
decomposed into two components, each corresponding to the solution of an operator-
formLS problem. Building on this decomposed-form solution, we propose twoKrylov
subspace based iterative methods to approximate each component, thereby providing
an approximate solution of the LSE problem. Several numerical examples are con-
structed to test the proposed iterative algorithm for solving the LSE problems, which
demonstrate the effectiveness of the algorithms.

Keywords Linear least squares · Linear equality constraints · Decomposed-form
solution · Krylov subspace · Golub-Kahan bidiagonalization · Null space restricted
LSQR
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1 Introduction

The linear least squares problem with equality constraints (LSE problem) arises fre-
quently in various fields such as data fitting, signal processing, control systems and
optimization [1–4]. These problems involve minimizing a least squares objective
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function while ensuring that a set of linear equality constraints is satisfied. Gener-
ally, the LSE problem aims to find the minimizer of the following problem:

min
x∈Rn

‖Ax − b‖2 s.t. Cx = d, (1.1)

where A ∈ R
m×n , and C ∈ R

p×n . It restricts the solution space to the set of solutions
that satisfy both the least squares objective and the linear equality constraints, which is
often used in caseswhere certain relationships between the variables are known a priori
and must be preserved. The LSE problem (1.1) has a solution if and only if Cx = d is
consistent, and it has a unique solution if and only if (AT,CT)T has full column rank.
There is a large amount of work on the analysis of the LSE problem; see e.g. [5–9].

Despite their wide applicability, solving large-scale LSE problems efficiently
remains a significant computational challenge. Classical solution approaches typi-
cally reduce the constrained LSE problem to an equivalent unconstrained problem
by eliminating the constraints. The key strategy of these methods are the constraint
substitution technique, which eliminates the constraints by reducing the dimension
of the problem. The first one is usually called the null space method [10–13]. This
method involves finding a null space basis for the matrix C using a rank-revealing QR
factorization [14–16]. The constraints are then incorporated into the LS problem by
substituting this basis into the system, leading to a reduced, unconstrained problem
of lower dimension. This approach provides numerical stability and is widely used
in many practical settings. The second one is usually called the direct elimination
method [11]. In this method, a substitution is made directly by expressing certain
solution components (those affected by the constraints) in terms of others. This can
be accomplished using a pivoted LU factorization or a rank-revealing QR factoriza-
tion of C [17]. The direct elimination method exhibits good numerical stability and
efficiency, particularly when implemented with appropriate matrix factorizations.

In addition to constraint substitution methods, there are some other methods that
transform the constrained LS problem to an unconstrained optimization problem.
The method based on the Lagrange multiplier formulation [17–19] is often useful.
This approach introduces auxiliary variables (Lagrange multipliers) to incorporate
the constraints into the optimization process, which constructs an augmented sys-
tem by combining the linear constraints and the LS problem, and both can be solved
simultaneously. This method provides a powerful and general way to enforce equality
constraints during the optimization. Techniques like weighting and updating proce-
dures can also be used to enforce constraints progressively, ensuring that the solution
satisfies the constraints a posteriori [20–23].

All the above methods, when implemented correctly, can provide a solution with
satisfied accuracy. However, in many practical scenarios, the problem size can be very
large. In such cases, matrix factorization-based methods become impractical due to
their cubic scaling computational complexity. This highlights the need to develop new
iterative methods for solving the LSE problem that do not rely on matrix factoriza-
tions. TheKrylov subspacemethod is well-known for its effectiveness in solving linear
systems, including linear equations and LS problems, where onlymatrix- vectormulti-
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plications are required during the iteration process [17, 24]. However, up to now, there
is a lack of Krylov iterative methods specifically for the LSE problem, possibly due
to an incomplete understanding of its properties. Establishing connections between
the LSE and LS problems could be valuable, as it would aid in the development of
efficient Krylov iterative methods for solving the LSE problem.

In this paper, we present a novel analysis of the LSE problem from the perspective
of operator-type LS problems. Building on this framework, we propose two Krylov
subspace based iterative methods for solving LSE problems. To this end, we construct
two linear operators using the matrices {A,C} and formulate two LS problems asso-
ciated with these operators. Using these formulations, we investigate the structure of
the solutions to the LSE problem and show that its minimum 2-norm solution can
be decomposed into two components, each corresponding to the solution of one of
the operator-based LS problems. Building on this connection, we derive two types of
decomposed-form solution for the LSE problem. To approximate the solution, it is
sufficient to solve the associated operator-form LS problems using the Golub-Kahan
bidiagonalization process [25–28]. This approach leads to Krylov subspace based iter-
ative procedures. Consequently, we develop two Krylov iterative methods for the LSE
problem, each corresponding to solving one of the decomposed-form solutions. The
proposed algorithms do not rely on any matrix factorizations. Instead, they follow an
inner-outer iteration structure, where, at each outer iteration, an inner subproblem is
approximately solved.We also propose a procedure for constructing LSE problems for
testing purposes and present several numerical examples to illustrate the effectiveness
of the proposed algorithms.

The paper is organized as follows. In Section 2, we review three commonly used
methods for the LSE problem. In Section 3, we analyze the LSE problem from the
perspective of operator-type LS problems and derive two types of decomposed-form
solution. In Section 4 we proposed two Krylov subspace based iterative algorithms for
approximating the decomposed-form solution. Numerical experiments are presented
in Section 5, and concluding remarks follow in Section 6.

Throughout the paper, we denote byN(·) andR(·) the null space and range space of
a matrix or linear operator, respectively, denote by I and 0 the identity matrix and zero
matrix/vector with orders clear from the context, and denote by span{·} the subspace
spanned by a group of vectors or columns of a matrix. We use PS to denote the
orthogonal operator onto a closed linear subspace S.

2 LSE problem and its computation

We review three classical methods for the LSE problem: the null space approach, the
method of direct elimination, and the augmented system approach. To simplify the
presentation, we assume in this section that C has full row rank.

The null space method was developed and discussed by a number of authors in the
1970s. Suppose the dimension ofN(C) is t and the columns of Z ∈ R

n×t form a basis
for N(C). The basic idea is that any vector x ∈ R

n satisfying the linear constraint
Cx = d can be written as x = x0 + Zy, where x0 is a particular solution of Cx = d.
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Let P ∈ R
n×n be a permutation matrix representing the pivoting, such that the QR

factorization of CP is

CP = Q
( R 0

p n − p

)
p, (2.1)

where Q ∈ R
p×p is an orthogonal matrix and R is a nonsingular upper triangular

matrix. Now we can get a solution of Cx = d:

x0 = P

(
R−1QTd

0

)
p

n − p
(2.2)

Now the LSE problem (1.1) becomes

min
y∈Rt

‖AZy − (b − Ax0)‖2 . (2.3)

By solving the above standard LS problem to get the solution y†, we get a solution
x† = x0 + Zy† to the LSE problem.

In the null space method, the matrix Q should be stored explicitly or implicitly
(by using e.g, Householder transformations), leading to a relatively high memory
demands and implied operation counts. The more challenging point is that the matrix
Z is usually dense, which makes it inefficient to solve the LS problem (2.6). Also, in
recent years, there have been someworks about constructing a sparse null spacematrix
Z , where the QR factorization of C with a threshold pivoting is used; see [29, 30].

The second method is the direct elimination, which involves expressing the depen-
dence of the selected p components of the vector x on the remaining n− p components,
and this relationship is then substituted into the LS problem in (1.1). Suppose
P ∈ R

n×n is a permutation matrix such that CP = (
C1 C2

)
with C1 ∈ R

p×p

being a nonsingular matrix. Let

AP =
( A1 A2

p m − p

)
m, x = Py = P

(
y1
y2

)
p

n − p
(2.4)

Now we have the substitution y1 = C−1
1 (d − C2y2). Combining this expression

with the LS problem (1.1), we have the transformed LS problem

min
y2∈Rn−p

∥∥∥ Ãy2 − (b − A1C
−1
1 d)

∥∥∥
2
, (2.5)

where
Ã = A2 − A1C

−1
1 C2 ∈ R

m×(n−p). (2.6)

Once we have the solution y2, then we can compute y1 and finally get the solution

of (1.1) with the expression x = P

(
y1
y2

)
. To get P andC1, usually a QR factorization

of C with pivoting should be exploited. For sparse matrices A and C , some strategies
have been proposed to give the transformed matrix Ã some sparse structure [30, 31],
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leading to a sparse LS problem (2.5) that can be computed effectively by an iterative
solver.

The third method is the augmented system method, which is based on the method
of Lagrange multiplier for constrained optimization problem. Consider the following
Lagrangian function for the constrained LS problem (1.1):

f (x, λ) = 1

2
‖Ax − b‖22 + λT(d − Cx), λ ∈ R

p. (2.7)

Finding the zero root of ∇x f (x, λ) leads to

ATAx − ATb − CTλ = 0.

By letting r = b− Ax and using Cx = d, we have the following symmetric indefinite
linear system: ⎛

⎝
0 AT CT

A I 0
C 0 0

⎞
⎠

⎛
⎝
x
r
λ

⎞
⎠ =

⎛
⎝
0
b
d

⎞
⎠ . (2.8)

If A and C are sparse and have full rank, then (2.8) is a (m + n + p) × (m + n + p)
sparse nonsingular linear system. Based on the above framework, there are several
variants of practical algorithms. We do not discuss them in more details, but refer the
readers to [30, 32–35].

3 Decomposed-form solution of the LSE problem

In this section, we investigate the structure of the solutions of (1.1) and derive two
decomposed-form expressions of the minimum 2-norm solution of (1.1). We consider
a more general case, which is formulated as

min
x∈S ‖Ax − b‖2, S = {x : x ∈ argmin

x∈Rn
‖Cx − d‖2}, (3.1)

where in S we use “argmin” to denote all the minimizers of minx∈Rn ‖Cx − d‖2. To
simplify the notation, we sometimes write (3.1) as

min
x∈Rn

‖Ax − b‖2 s.t. ‖Cx − d‖2 = min, (3.2)

provided it does not introduce any ambiguity. In this paper, we also call (3.1) the LSE
problem. Note that if Cx = d is a consistent linear system, then (3.1) is equivalent to
(1.1). In the rest part of the paper, we focus on the analysis and computation of (3.1).
We note that, in what follows, the assumption that C has full row rank is no longer
required.

The following theorem about the generalized linear least squares (GLS) problem
will be used in the subsequent analysis. We refer to [27, 36] for more details. Note
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that for a symmetric positive semidefinite matrix B ∈ R
n×n , if we define 〈x, x ′〉B :=

xTBx , then (R(B), 〈·, ·〉B) is a finite-dimensional Hilbert space.

Theorem 3.1 For any K ∈ R
m×n, L ∈ R

p×n, and g ∈ R
m, consider the GLS problem

min
x∈Rn

‖Lx‖2 s.t. ‖Kx − g‖2 = min. (3.3)

The following properties hold:

(1) a vector x ∈ R
n is a solution of (3.3) if and only if

{
K T(Kx − g) = 0,
xTMz = 0, ∀ z ∈ N(K ),

(3.4)

where M = K TK + LTL;
(2) there exist a unique solution in R(M), which is the minimum 2-norm solution of

(3.3), given by x = K †
Lg, where K †

L := (I − (LPN(K ))
†L)K † is the L-weighted

pseudoinverse of K ;
(3) define the linear operator

T : X := (R(M), 〈·, ·〉M ) → (Rm, 〈·, ·〉2), v 
→ Kv, (3.5)

where v and Kv are column vectors under the canonical bases of Rn and R
m.

Then the minimum ‖ · ‖X-norm solution of the least squares problem

min
v∈X ‖T v − g‖2 (3.6)

is the minimum 2-norm solution of (3.3).

The following result characterizes the structure of the solutions of (3.1).

Theorem 3.2 Let G = ATA + CTC. The minimum 2-norm solution of (3.1) is

x† = C†
Ad + (PR(G) − C†

AC)A†b, (3.7)

and the set of all the solutions is x† + N(G).

Proof First note that N(G) = N(A) ∩ N(C). Thus, if x is a solution of (3.1), then
PR(G)x is also a solution. Conversely, if x ∈ R(G) is a solution, then x + z is also a
solution for any z ∈ N(G). Since N(G) ⊥ R(G), the minimum 2-norm solution of
(3.1) must inR(G). Notice that

‖Ax − b‖22 = ‖Ax − PR(A)b‖22 + ‖PR(A)⊥b‖22
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withPR(A) = AA† and the second term is independent of x . Therefore, theminimizer
of (3.1) is identical to the minimizer of

min
x∈S ‖A(x − A†b)‖2, S = {x : x ∈ argmin

x∈Rn
‖Cx − d‖2}.

Using the transformation x̄ = x− A†b and noticing thatCx−d = C(x̄+ A†b)−d =
Cx̄ − (d −CA†b), the general solution of the above problem is x = A†b + x̃ , where
x̃ is the general solution of

min
x̄∈Rn

‖Ax̄‖2 s.t. ‖Cx̄ − (d − CA†b)‖2 = min. (3.8)

By Theorem 3.1, the general solution of this problem is

x̃ = C†
A(d − CA†b) + z, z ∈ N(G).

Therefore, the general solution of (3.1) is

x = A†b + C†
A(d − CA†b) + z = C†

Ad + (I − C†
AC)A†b + z, z ∈ N(G). (3.9)

Note from Theaorem 3.1 thatR(C†
A) ⊆ R(G), which indicates that the projection of

the above solution onto R(G) is x†. Thus, x† is a solution of (3.1) inR(G).
It only remains to show that there exists a unique solution of (3.1) inR(G). To see

it, notice from the above transformation that x ∈ R(G) is a solution of (3.1) if and
only if x − PR(G)A

†b ∈ R(G) is a solution of (3.8). By Theorem 3.1, (3.8) has a
unique solution in R(G), this implies that (3.1) has a unique solution in R(G). ��

Write
x†1 = C†

Ad, x†2 = (PR(G) − C†
AC)A†b. (3.10)

The minimum 2-norm solution of (3.1) has the decomposed-form: x† = x†1 + x†2 .

Note that x†1 is the minimum 2-norm solution of the GLS problem

min
x∈Rn

‖Ax‖2 s.t. ‖Cx − d‖2 = min. (3.11)

By Theorem 3.1, x†1 is also the solution of the operator-form LS problem (3.6), where
K = C and L = A. We can use the iterative method proposed in [27] to approximate
x†1 . Although the expression of x†2 looks relatively complicated, we will show that it
is the minimum 2-norm solution of the following LS problem:

min
x∈N(C)

‖Ax − b‖2. (3.12)

The following lemma is useful, which provides the necessary and sufficient condi-
tion that the minimum 2-norm solution must satisfy.
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Lemma 3.1 A vector x ∈ N(C) is the minimum 2-norm solution of (3.12) if and only
if {

PN(C)(A
T(Ax − b)) = 0,

x ⊥ N(A) ∩ N(C).

Proof Define the linear operator

A : (N(C), 〈·, ·〉2) → (Rm, 〈·, ·〉2), v 
→ Av, (3.13)

where v and Av are column vectors under the canonical bases of Rn and R
m . Notice

that X := (N(C), 〈·, ·〉2) is a finite dimensional Hilbert space. Therefore, there exist
a unique minimum X-norm solution of minv∈X ‖Av − b‖2, which is the minimum
2-norm solution of (3.12). Moreover, x ∈ N(C) is the minimum X-norm solution if
and only if A∗(Ax − b) = 0 and x ⊥X N(A), where the orthogonal relation ⊥X in
X is the 2-orthogonal relation in N(C), and the linear operator A∗ : (Rm, 〈·, ·〉2) →
(N(C), 〈·, ·〉2) is the adjoint of A defined by the relation 〈Av, u〉2 = 〈v,A∗u〉2 for
any v ∈ N(C) and u ∈ R

m . It is easy to verify that A∗v = PN(C)A
Tv under the

canonical bases. Thus, A∗(Ax − b) = 0 is equivalent to PN(C)(A
T(Ax − b)) = 0.

Since N(A) = {x ∈ N(C) : Ax = 0} = N(A) ∩ N(C), it follows that x ⊥X N(A)

is equivalent to x ⊥ N(A) ∩ N(C). ��
Now we can prove that x†2 is the minimum 2-norm solution of (3.12).

Theorem 3.3 Let x†2 = (PR(G) −C†
AC)A†b, then x†2 is the minimum 2-norm solution

of (3.12).

Proof By Lemma 3.1, the proof contains the following three steps.
Step 1: prove x†2 ∈ N(C). Using [27, Theorem 3.7], we have the relation CC†

AC =
C . It follows that

Cx†2 = (CPR(G) − CC†
AC)A†b = C(PR(G) − I)A†b = −CPN(G)A

†b = 0,

where we have used N(G) ⊆ N(C).
Step 2: prove PN(C)(A

T(Ax†2 − b)) = 0. First we have

AT(Ax†2 − b) = AT[APR(G)A
†b − b − AC†

AC A†b]
= AT(AA† − I)b − ATAC†

AC A†b

= −ATAC†
AC A†b,

where we have used APR(G)x = Ax − APN(G)x = Ax for any x ∈ R
n , and

I − AA† = PR(A)⊥ = PN(AT). Let w = C†
AC A†b. By Theorem 3.2, w is the

minimum 2-norm solution of

min ‖Ax‖2 s.t. ‖Cx − CA†b‖2 = min .

123



Numerical Algorithms

Using Theorem 3.2 again, it follows that wTGz = 0 for any z ∈ N(C), which is just

wT(ATA + CTC)z = (ATAw)Tz = 0

for any z ∈ N(C), which means that ATAw ⊥ N(C). This proves PN(C)A
TAw = 0,

which is the desired result.
Step 3: prove x†2 ⊥ N(A)∩N(C). This is obvious by noticing that x†2 ∈ R(G) and

R(G) ⊥ N(A) ∩ N(C). ��
From the above proof,weknow that x†2 is theminimumX-norm solution of operator-

form LS problem minX ‖Ax − b‖2 with A defined in (3.13). Therefore, we have

x†2 = A†b =: A†
N(C)

b. (3.14)

Note that A†
N(C)

is essentially the matrix form ofA† under the canonical bases of Rn

and R
m , which depends both on A and N(C).

Based on Theorem 3.3, we will propose an iterative method for the LS problem
(3.12) to approximate x†2 . Before this, let us investigate several properties of the matrix

A†
N(C)

, which will be used to derive another decomposed-form solution of (3.1).

Proposition 3.1 The following two equalities hold:

{
(I − A†

N(C)
A)C† = C†

A

(PR(C) − C†
AC)A† = A†

N(C)
.

(3.15)

Proof The second equality is directly derived from Theorem 3.3. Now we prove the
first equality. By Theorem 3.1, for any y ∈ R

n , C†
Ay is the 2-minimum solution of

min ‖Ax‖2 s.t. ‖Cx − y‖2 = min,

which has the same solution as

min ‖Ax‖2 s.t. ‖C(x − C†y)‖2 = min .

Let x̄ = x − C†y. The above problem becomes

min ‖Ax̄ + AC†y‖2 s.t. ‖Cx̄‖2 = min,

which has the minimum 2-norm solution x̄† = −A†
N(C)

AC†y, and a general solution

is x̄ = x̄† + z with z ∈ N(A) ∩ N(C). Therefore, a general solution of the original
problem is

x = C†y + x̄†y + z.

Note that PN(C)C
†y = (I − C†C)C†y = 0. Thus, C†y ⊥ N(C) and C†y ⊥ z.

Combining with x̄† ⊥ z we have C†y + x̄† ⊥ z. Therefore, C†y + x̄†y = (I −
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A†
N(C)

A)C†y is the minimum 2-norm solution of the original problem. Since y is

arbitrary, we finally get (I − A†
N(C)

A)C† = C†
A. ��

From the above result, we obtain the following decomposed-form solution of (3.1).

Corollary 3.1 The minimum 2-norm solution of (3.1) has the form

x† = C†d + A†
N(C)

(b − AC†d). (3.16)

Proof Using Theorem 3.1 and Proposition 3.1, we have

x† = C†
Ad + A†

N(C)
b = (I − A†

N(C)
A)C†d + A†

N(C)
b

= A†
N(C)

(b − AC†d) + C†d,

which is the desired result. ��
By Theorem 3.2 and Corollary 3.1, we can give two approaches for computing x†.

The first approach

(1) Solve the GLS problem (3.11) to get x†1 = C†
Ad;

(2) Solve the LS problem (3.12) to get x†2 = A†
N(C)

b;

(3) Compute x† = x†1 + x†2 .

The second approach

(1) Solve the LS problem minx ‖Cx − d‖2 to get the minimum 2-norm solution
x̃†1 = C†d;

(2) Let b̃ = b−Ax̃†1 . Solve the LS problemminx∈N(C) ‖Ax−b̃‖2 to get theminimum

2-norm solution x̃†2 = A†
N(C)

b̃;

(3) Compute x† = x̃†1 + x̃†2 .

In the next section, we will propose two Krylov subspace based iterative methods
for solving (3.1), which correspond to the above two approaches, respectively.

4 Krylov iterativemethods for the LSE problem

From the previous section, we find that for solving the LSE problem, we need to com-
puteC†

A or A
†
N(C)

. We first propose the iterative methods for such computations based
on the Krylov subspace, then we give two iterative algorithms for the LSE problem.
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4.1 Iterative method for computing C†A

Based on Theorem 3.1, the author in [27] proposes a Krylov iterative method for
approximating C†

Ad for a vector d ∈ R
p. The idea is to apply the Golub-Kahan

bidiagonalization (GKB) to solve the operator-form LS problem

min
x∈X ‖T x − d‖2, (4.1)

where X = (R(G), 〈·, ·〉G) and T : X → (Rm, 〈·, ·〉2), x 
→ Cx under the canonical
bases. Applying the GKB to {T , d} we get the recursive relations

⎧⎪⎨
⎪⎩

β1u1 = d

αivi = T ∗ui − βivi−1

βi+1ui+1 = T vi − αi ui ,

(4.2)

where T ∗ : (Rm, 〈·, ·〉2) → X is the adjoint operator of T defined by the relation
〈T x, y〉2 = 〈x, T ∗y〉G for any x ∈ X and y ∈ R

m . It has been shown in [27] that
the matrix form of T ∗ is G†C . The positive scalars αi and βi are computed such that
‖vi‖X = ‖ui‖2 = 1. Note that v0 := 0 for the initial step.

After k steps, the above GKB process generates two Krylov subspaces and projects
the LS problem (4.1) onto the Krylov subspaces to get a k-dimensional LS problem.
The solution of the k-dimensional LS problem can be updated step by step from the
previous one, which converges to C†

Ad as k increases. This leads to the following

Algorithm 1 for iteratively approximating C†
Ad. Please refer to [27] for more details.

Algorithm 1 Generalized LSQR (gLSQR) for computing C†
Ad.

Input: A ∈ R
m×n , C ∈ R

p×n , d ∈ R
p

1: Compute β1 = ‖d‖2, u1 = d/β1 β1ũ1 = b
2: Compute s = G†CTu1, α1 = (sTGs)1/2, v1 = s/α1 � G = AT A + CTC
3: Set x0 = 0, w1 = v1, φ̄1 = β1, ρ̄1 = α1
4: for i = 1, 2, . . . until convergence, do
5: r = Cvi − αi ui
6: βi+1 = ‖r‖2, ui+1 = r/βi+1
7: s = G†CTui+1 − βi+1vi
8: αi+1 = (sTGs)1/2, vi+1 = s/αi+1
9: ρi = (ρ̄2i + β2

i+1)
1/2

10: ci = ρ̄i /ρi
11: si = βi+1/ρi
12: θi+1 = siαi+1
13: ρ̄i+1 = −ciαi+1
14: φi = ci φ̄i
15: φ̄i+1 = si φ̄i
16: xi = xi−1 + (φi /ρi )wi
17: wi+1 = vi+1 − (θi+1/ρi )wi
18: end for
Output: Approximation to C†

Ad
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InAlgorithm1, themain computational bottleneck is the need to computeG†(CTui )
at each iteration. For large-scale matrices, it is generally impractical to obtain G†

directly. In this case, using the relation

G†(CTui ) = argmin
x∈Rn

‖Gx − CTui‖2, (4.3)

we can compute G†(CTui ) by iteratively solving the above LS problem. Furthermore,
by noticing that G†(CTui ) is the minimum 2-norm solution of the LS problem

min
x∈Rn

∥∥∥∥
(
C
A

)
x −

(
ui
0

)∥∥∥∥
2
, (4.4)

we can use the LSQR algorithm [37] to approximate G†(CTui ) without explicitly

forming G. If

(
C
A

)
is sparse and has full column rank, and its sparse QR factorization

is not difficult to compute, then we can compute the solution of (4.4) directly.

4.2 Iterative method for computing A†N(C)

Now we consider how to design a GKB based method to approximate AN(C)b for a
b ∈ R

m . First, suppose an orthonormal basis of the null space N(C) is {w1, . . . , wt }.
Let W = (w1, . . . , wt ) ∈ R

n×t . Using Theorem 3.3, if follows that A†
N(C)

b = W f ,

where f ∈ R
t is the minimum 2-norm solution of the LS problem

min
f ∈Rt

‖(AW ) f − b‖2 (4.5)

To solve (4.5) iteratively, we apply the GKB to {AW , b}, which leads to the following
recursive relations: ⎧⎪⎨

⎪⎩

δ1 p1 = b

γi q̃i = (AW )T pi − δi q̃i−1

δi+1 pi+1 = (AW )q̃i − γi pi ,

(4.6)

where the positive scalars are computed such that ‖pi‖2 = ‖qi‖2 = 1, and we set
q0 := 0 for the initial step.

Using the property of GKB, after k steps, it generates two groups of 2-orthonormal
vectors {pi }k+1

i=1 and {q̃i }k+1
i=1 . Then we can approximate the solution of (4.5) in the

subspace span{q̃i }ki=1 as k grows from 1 to t . This approach is equivalent to applying
the standard LSQR algorithm to (4.5). Therefore, to get a good approximation to
A†
N(C)

b, we can search a solution of (3.12) in the subspace span{Wq̃i }ki=1 at the k-th
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iteration. Let qi = Wq̃i . Note that PN(C) = WW T. From the recursions (4.6), we get

⎧⎪⎨
⎪⎩

δ1 p1 = b

γi qi = PN(C)A
T pi − δi qi−1

δi+1 pi+1 = Aqi − γi pi ,

(4.7)

where ‖qi‖2 = 1. The following result demonstrates that this iterative process is
essentially an operator-type GKB.

Proposition 4.1 Let the linear operator be defined as (3.13). Then the iterative process
(4.7) is equivalent to the GKB applied to {A, b}.
Proof From the proof of Lemma 3.1 we know thatA∗v = PN(C)A

Tv for any v ∈ R
m

under the canonical bases. Therefore, the second recursive relation in (4.7) is equivalent
to γi qi = A∗ pi − δi qi−1. Now we can find that (4.7) is just the recursions of the
operator-type GKB applied to {A, b} under the canonical bases. ��

Proposition 4.1 implies that the outputs of the above iterative process do not depend
on the choice of the 2-orthonormal basis ofN(C), i.e. it will generate the same vectors
{pi , qi } and scalars {γi , δi }, regardless of the particular 2-orthonormal basis {wi }ti=1
chosen for N(C).

Now we can give the practical computational approach of this iterative process.
Since all the constructed vectors qi are restricted in N(C), we name this process the
Null Space Restricted GKB (NSR-GKB). The pseudocode of NSR-GKB is shown in
Algorithm 2.

Note that PN(C) = In − C†C . In the computation of NSR-GKB, the orthonormal

basis ofN(C) is not required,where instead at each stepweneed to computeC†CAT pi ,
which is the most costly part. Write ṽi = CAT pi , which is easy to compute. To get a
good approximation toC†ṽi , we can iteratively compute theminimum2-norm solution
of the LS problem

min
x∈Rn

‖Cx − ṽi‖2, (4.8)

which can be done efficiently by using the LSQR algorithm. In this case, NSR-GKB
has the nested inner-outer iteration structure. If C has a special structure such that its

Algorithm 2 Null Space Restricted GKB (NSR-GKB).
Input: A ∈ R

m×n , C ∈ R
p×n , b ∈ R

m

1: Compute δ1 = ‖b‖2, p1 = b/δ1,
2: Compute s = PN(C)A

T p1, γ1 = ‖s‖2, q1 = s/γ1
3: for i = 1, 2, . . . , k, do
4: r = Aqi − γi pi ,
5: δi+1 = ‖r‖2, pi+1 = r/δi+1
6: s = PN(C)A

T pi+1 − δi+1qi
7: γi+1 = ‖s‖2, qi+1 = s/γi+1
8: end for
Output: {γi , δi }k+1

i=1 , {pi , qi }k+1
i=1
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rank-revealing QR factorization is relatively easy to compute, we can first get the QR
factorization of C and then compute C†ṽi directly.

The following result characterizes the structures of the two Krylov subspaces gen-
erated by NSR-GKB.

Proposition 4.2 For the NSR-GKB process, the generated vectors {qi }ki=1 ⊂ N(C)

constitute a 2-orthonormal basis of the Krylov subspace

Kk(PN(C)A
TA,PN(C)A

Tb) = span{(PN(C)A
TA)iPN(C)A

Tb}k−1
i=0 , (4.9)

and {pi }ki=1 ⊂ R
m constitute a 2-orthonormal basis of the Krylov subspace

Kk(APN(C)A
T, b) = span{(APN(C)A

T)i b}k−1
i=0 . (4.10)

Proof To get more insights into the NSR-GKB process, here we give two proofs.
The first proof is based on the property of GKB for linear compact operators [26].

By Proposition 4.1, theNSR-GKB is essentially the operator-typeGKBof {A, b}, where
the underlying Hilbert spaces are X := (N(C), 〈·, ·〉2) and R

m . Therefore, under the
canonical bases, the generated vectors satisfy qi ∈ N(C) and pi ∈ R

m , and {qi }ki=1
and {pi }ki=1 are 2-orthonormal bases of the Krylov subspaces Kk(A∗A,A∗b) and
Kk(AA∗, b), respectively. Since A∗y = PN(C)A

T y for any y ∈ R
m , we have

(A∗A)iA∗b = (PN(C)A
TA)iPN(C)A

Tb,

and
(AA∗)i b = (APN(C)A

T)i b.

The desired result immediately follows.
The second proof uses the recursions (4.6), which is based on a 2-orthonormal

basis {wi }ti=1 forN(C). The standard GKB process of {(AW ), b}with recursions (4.6)
generates two 2-orthonormal basis {q̃i }ki=1 and {pi }ki=1 for the two Krylov subspaces

Kk((AW )TAW , (AW )Tb) = span{((AW )TAW )i (AW )Tb}k−1
i=0 ,

Kk(AW (AW )T, b) = span{(AW (AW )T)i b}k−1
i=0 ,

respectively. Using qi = Wq̃i , WW T = PN(C) and noticing that

W ((AW )TAW )i (AW )Tb

= W (W TATAW )iW TATb = (WW TATA)iWW TATb

= (PN(C)A
TA)iPN(C)A

Tb,

we immediately obtain (4.9). Similarly, we can obtain (4.10). ��
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Since the dimensions of (N(C), 〈·, ·〉2) and R
m are t and m, respectively,

Proposition 4.2 implies that NSR-GKB will eventually terminate at most min{t,m}
steps. The “terminate step” of NSR-GKB is defined as

kt = min{k : αk+1βk+1 = 0}, (4.11)

which means that γi or δi equals zero at the current step and thereby the Krylov
subspace can not expand any longer. SupposeNSR-GKBdoes not terminate before the k-
th iteration, that is, γiδi �= 0 for 1 ≤ i ≤ k. Then the k-stepNSR-GKB process generates
two 2-orthonormal matrices Qk = (q1, . . . , qk) ∈ R

n×k and Pk = (p1, . . . , pk) ∈
R
m×k that satisfy the following matrix-form relations:

⎧⎪⎨
⎪⎩

β1Qk+1e1 = b

APk = Qk+1Bk

PN(C)A
TQk+1 = Pk BT

k + γk+1qk+1eTk+1,

(4.12)

where e1 and ek+1 are the first and (k + 1)-th columns of the identity matrix of order
k + 1, and the bidiagonal matrix

Bk =

⎛
⎜⎜⎜⎜⎜⎜⎝

γ1
δ2 γ2

δ3
. . .

. . . γk
δk+1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R
(k+1)×k (4.13)

has full column rank. We remark that it may happen that δk+1 = 0, meaning that
NSR-GKB terminates at the k-th step with qk+1 = 0.

Now we seek the approximation to A†
N(C)

b by computing the solution of (3.12) in

the Krylov subspace span{Qk} ⊂ N(C). For any x ∈ span{Qk}, let x = Qk y with
y ∈ R

k . Using the relations (4.12), we get

min
x=Qk y

‖Ax − b‖2 = min
y∈Rk

‖Pk+1(Bk y − β1e1)‖2 = min
y∈Rk

‖Bk y − β1e1‖2.

Therefore, at the k-th iteration, we only need to solve the following k-dimensional
subproblem to get the approximation:

xk = Qk yk, yk = argmin
y∈Rk

‖Bk y − β1e1‖2. (4.14)

Note that before NSR-GKB terminates, Bk has full column rank and the LS problem
argminy ‖Bk y − β1e1‖2 always has the unique solution yk = B†

kβe1. As the iteration
proceeds, xk will gradually approximate the true solution of (3.12). The following
result shows that at the terminate step, we will get the exact solution of (3.12).
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Theorem 4.1 Suppose that NSR-GKB terminates at step kt . Then the iterative solution
xkt = A†

N(C)
b, which is the exact minimum 2-norm solution of (3.12).

Proof Since xkt ∈ span{Qk} ⊂ N(C), we only need to verify that xkt satisfies the two
relations of Lemma 3.1.

Write xkt as xkt = Qkt ykt and use the relation Axkt − b = Qkt+1(Bkt yt − β1e1).
We have

PN(C)A
T(Axkt − b) = PN(C)A

TQkt+1(Bkt ykt − δ1e1)

= (Pkt B
T
kt + γkt+1qkt+1e

T
k+1)(Bkt ykt − δ1e1)

= Pkt (B
T
kt Bkt ykt − BT

kt δ1e1) + γkt+1δkt+1vkt+1e
T
kt ykt

= γkt+1δkt+1vkt+1e
T
kt ykt

= 0,

since γkt+1δkt+1 = 0 and BT
kt
Bkt ykt = BT

kt
δ1e1 due to ykt = argminy ‖Bkt y−β1e1‖2.

This verifies the first relation of Lemma 3.1. By Proposition 4.2 we have xkt ∈
PN(C)R(AT) = PN(C)N(A)⊥. Let xkt = PN(C)w with w ∈ N(A)⊥. For any
y ∈ N(A) ∩ N(C), we have

〈xkt , y〉2 = 〈PN(C)w, y〉2 = 〈w,PN(C)y〉2 = 〈w, y〉2 = 0.

This verifies the second relation of Lemma 3.1. ��
In the practical computation, we do not need to compute B†

k to get xk at each iter-
ation. Instead, by exploiting the bidiagonal structure of Bk , we can design a recursive
procedure to update xk based on the Givens QR factorization of Bk . This procedure
follows a very similar approach proposed in [37, Section 4.1], and we omit the deriva-
tion. Combining the NSR-GKB process and the update procedure, we get the following
Algorithm 3 for approximating A†

N(C)
b. This algorithm is named the Null Space

Restricted LSQR(NSR-LSQR). We remark that for notational simplicity, some nota-
tions in Algorithm 3 are the same as those in Algorithm 1, but the readers can easily
find the differences between them.

To check the convergence condition of NSR-LSQR, here we give a stopping cri-
terion. The idea is based on Theorem 3.3 and Proposition 4.1, which implies that
NSR-LSQR is a Krylov subspace iterative method applied to the operator-type LS
problem minx∈X ‖Ax − b‖2. For the standard LS problem minx ‖Ax − b‖2, a com-

monly used stopping criterion is ‖ATrk‖2‖A‖2‖rk‖2 , where rk = Axk − b (here we use rk and
xk to denote the quantities computed by LSQR without ambiguity); see [37, Section
6]. Similarly, for the NSR-LSQR algorithm, we use the following relative residual norm
for the stopping criterion:

‖A∗rk‖2
‖A‖2‖rk‖2 = ‖PN(C)A

Trk‖2
‖rk‖2 ≤ tol, (4.15)
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Algorithm 3 Null Space Restricted LSQR (NSR-LSQR) for computing A†
N(C)

b.

Input: A ∈ R
m×n , C ∈ R

p×n , b ∈ R
m

1: (Initialization)
2: Compute δ1 p1 = b, γ1q1 = PN(C)A

T p1 � Step 1–2 of NSR-GKB

3: Set x0 = 0, z1 = q1, φ̄1 = δ1, ρ̄1 = γ1
4: for i = 1, 2, . . . until convergence, do
5: (Applying the NSR-GKB process)
6: δi+1 pi+1 = Aqi − γi pi
7: γi+1qi+1 = PN(C)A

T pi+1 − δi+1qi
8: (Applying the Givens QR factorization to Bk )
9: ρi = (ρ̄2i + δ2i+1)

1/2

10: ci = ρ̄i /ρi
11: si = βi+1/ρi
12: θi+1 = siγi+1
13: ρ̄i+1 = −ciγi+1
14: φi = ci φ̄i
15: φ̄i+1 = si φ̄i
16: (Updating the solution)
17: xi = xi−1 + (φi /ρi )zi
18: wi+1 = vi+1 − (θi+1/ρi )zi
19: end for
Output: Approximation to A†N(C)

b

where rk = Axk − b, and ‖A‖2 := max
v∈N(C)

v �=0

‖Av‖2‖v‖2 . From the proof of Theorem 4.1 we

know that A∗rk would be zero when the exact solution is obtained. Furthermore, at
each iteration, we also have

‖A∗rk‖2 = ‖PN(C)A
T(Axk − b)‖2 = ‖γk+1δk+1vk+1e

T
k yk‖2 = γk+1δk+1|eTk yk |.

This means that ‖A∗rk‖2 can be quickly obtained with almost no additional cost. The
following result provides an approach for estimating ‖A‖2.
Proposition 4.3 Suppose {wi }ti=1 is an arbitrary 2-orthonormal basis of N(C) and
W = (w1, . . . , wt ) ∈ R

n×t . Then it holds that

‖A‖2 = σmax(AW ), (4.16)

which is the largest singular value of AW.

Proof For any v ∈ N(C), there exist a unique y ∈ R
t such that v = Wy, and

‖v‖2 = ‖y‖2. Therefore, we have

‖A‖2 = max
v∈N(C)

v �=0

‖Av‖2
‖v‖2 = max

y∈Rt

y �=0

‖AWy‖2
‖Wy‖2 = max

y∈Rt

y �=0

‖AWy‖2
‖y‖2 = ‖AW‖2 = σmax(AW ).

The proof is completed. ��

123



Numerical Algorithms

Algorithm 4 Krylov Iterative Decomposed Solver-I (KIDS-I) for (3.1).
Input: A ∈ R

m×n , C ∈ R
p×n , b ∈ R

m , d ∈ R
p

1: Compute x†1 = C†
Ad by Algorithm 1

2: Compute x†2 = A†N(C)
b by Algorithm 3

3: Compute x† = x†1 + x†2
Output: Approximate solution of (3.1)

Note from Proposition 4.3 that ‖A‖2 = σmax(AW ) does not depend on the choice
of the 2-orthonormal basis ofN(C). To estimate σmax(AW ), a very practical approach
is to apply the GKB based SVD algorithm [25]. Combining (4.6) and (4.7), we can
find that NSR-GKB generates the same {γi , δi } as that generated by the GKB of AW ,
wheneverwhich 2-orthonormal basis {wi }ti=1 is used. Therefore, we can use the largest
singular value of Bk generated by NSR-GKB to approximate σmax(AW ), and it will not
take too many iterations to get an accurate estimate.

4.3 Two Krylov iterative methods for the LSE problem

Based on Algorithm 1 and Algorithm 3, we give two Krylov subspace based iterative
algorithms for the LSE problem, which correspond to the two approaches at the end
of Section 3, respectively. The first algorithm named Krylov Iterative Decomposed
Solver-I (KIDS-I) is shown in Algorithm 4, and the second algorithm named Krylov
Iterative Decomposed Solver-II (KIDS-II) is shown in Algorithm 5.

We give a brief comparison between the above two algorithms. Generally, for large-
scale problems, both the two algorithms have a nested inner-outer iteration structure:
for KIDS-II, we need to solve (4.8) at each iteration of Algorithm 3, while for KIDS-II,
we need to solve (4.4) and (4.8) at each iteration of Algorithm 1 and Algorithm 3,
respectively. In KIDS-I, the computation of x†1 and x

†
2 can be performed simultaneously.

However, in KIDS-II, the three steps (corresponding to lines 1–3 in Algorithm 5) must
be performed sequentially.

5 Numerical experiments

We present several numerical examples to illustrate the performance of the two
proposed algorithms for the LSE problems. All the experiments are conducted in
MATLAB R2023b with double precision.

Algorithm 5 Krylov Iterative Decomposition Solver-II (KIDS-II) for (3.1).
Input: A ∈ R

m×n , C ∈ R
p×n , b ∈ R

m , d ∈ R
p

1: Compute x̃†1 = C†d by solving minx ‖Cx − d‖2
2: Compute b̃ = b − Ax̃†1
3: Compute x̃†2 = A†N(C)

b̃ by Algorithm 3

4: Compute x† = x̃†1 + x̃†2
Output: Approximate solution of (3.1)
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5.1 Small- andmedium-scale problems

It is worth noting that much of the existing literature on LSE problems lacks numer-
ical results, primarily due to the difficulty of constructing nontrivial test problems,
particularly for large-scale matrices. Based on the analysis of the LSE problems in
Section 3, we propose the following procedure to construct LSE problems for testing
purposes.

Construct test problems By Theorem 3.2 and Theorem 3.3, the minimum 2-norm
solution of (3.1) is x† = x†1 + x†2 , where x

†
1 is the minimum 2-norm solutions of (3.3)

with K = C and L = A, and x†2 is the minimum 2-norm solutions of (3.12). With the
help of the approach for constructing test problems for the GLS problems (see [27,
Section 5]), we can construct a test LSE problem using the following steps:

(1) Choose two matrices A ∈ R
m×n and C ∈ R

p×n . Compute G = ATA + CTC .
(2) Compute a matrix B ∈ R

n×t whose columns form a basis for N(C).
(3) Construct a vector w1 ∈ R(G). Compute

x†1 = w1 − B(BTGB)−1BTGw1. (5.1)

(4) Choose a vector z1 ∈ R(C)⊥ and let d = Cx†1 + z1.
(5) Construct a vector w2 ∈ R

t such that w2 ⊥ N(AB), and choose a vector z2 ∈
R(AB)⊥.

(6) Let x†2 = Bw2 and b = Ax†2 + z2.

(7) Compute x† = x†1 + x†2 .

Note that the fourth step ensures that x†1 = C†
Ad, while the sixth step ensures that

x†2 = A†
N(C)

b. By this construction, the minimum 2-norm solution of (3.1) is x†.
In the numerical experiments,we construct four test examples. For the first example,

we set A = D1,which is the scaled discretization of thefirst-order differential operator:

D1 =
⎛
⎜⎝
1 −1

. . .
. . .

1 −1

⎞
⎟⎠ ∈ R

(n−1)×n . (5.2)

ThematrixC ∈ R
2324×4486 named lp_bnl2 comes from linear programming problems

and is sourced from the SuiteSparse Matrix Collection [38]. Let w1 = (1, · · · , 1)T ∈
R
n . We use the MATLAB built-in function null.m to compute a basis matrix B

for N(C), and we let w2 be the first column of (AB)T. To obtain vectors z1 and z2,
we compute the projections of the random vectors randn(p,1) and randn(m,1)
onto R(C)⊥ and R(AB)⊥, respectively.
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For the second example, we set A = D2, which is the scaled discretization of the
second-order differential operator:

D2 =
⎛
⎜⎝

−1 2 −1
. . .

. . .
. . .

−1 2 −1

⎞
⎟⎠ ∈ R

(n−2)×n, (5.3)

and the matrixC ∈ R
5190×9690 named r05 comes from linear programming problems,

taken from [38]. We use almost the similar setting as the above for constructing the
LSE problem, where the only difference is that we construct w1 ∈ R

n by evaluating
the function f (t) = t on a uniform grid over the interval [0, 1], that is, w1(k) = k−1

n−1
for k = 1, . . . , n.

For the third example, we choose the matrix M ∈ R
3534×3534 named cage9 from

[38], which arises from the directed weighted graph problem. Then we set A = M(:
, 1 : 2500) and C = M(:, 2501 : 3534). Then we construct the LSE problem using
almost the same setting as the above, where the only difference is that we construct
w1 ∈ R

n by evaluating the function f (t) = t2 on a uniform grid over the interval

[−1, 1], that is,wk(k) =
(
2(k−1)
n−1 − 1

)2
for k = 1, . . . , n.We use cage9-I and cage9-II

to denote A and C , respectively.
For the fourth example, we choose the matrix M ∈ R

9728×9728 named pf2177 from
[38], which arises from the optimization problem. Then we set A = M(:, 1 : 6500)
and C = M(:, 6501 : 9728). Then we construct the LSE problem using almost the
same setting as the above, where the only difference is that we construct w1 ∈ R

n by
evaluating the function f (t) = sin(2t) + 3 cos(t) on a uniform grid over the interval

[−π, π ], that is,w(k) = sin
(
4π(k−1)
n−1 − 2π

)
−3 cos

(
2π(k−1)
n−1 − π

)
for k = 1, . . . , n.

We use pf2177-I and pf2177-II to denote A and C , respectively.
Several properties of the matrices in the four test examples are listed in Table 1.

Experimental results In this experiment, we demonstrate the convergence behavior
and the final accuracy of the approximate solutions computed by KIDS-I and KIDS-II.
For comparison, we also compute two solutions using the null space method and the
direct elimination method, denoted as “NS” and “DE”, respectively. For the KIDS-I
algorithm, at the k-th step, we compute the approximations to x†1 and x

†
2 , respectively,

which are denoted by x1k and x2k . We then compute the k-th approximate solution of

Table 1 Properties of the test examples

A C
Example name m × n κ(A) name p × n κ(C)

1 D1 4485 × 4486 2855.90 lp_bnl2 2324 × 4486 7765.31

2 D2 9688 × 9690 1.68 × 107 r05 5190 × 9690 121.82

3 cage9-I 2500 × 3534 3.93 cage9-II 1034 × 3534 12.48

4 pf2177-I 6500 × 9728 134.84 pf2177-II 3228 × 9728 44.00
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Fig. 1 The convergence history of KIDS-I and KIDS-II with respect to the true solution, where all the inner
iterations are computed accurately. (a) {D1, lp_bnl2}; (b){D2, r05}; (c) {cage9-I, cage9-II}; (d) {pf2177-I,
pf2177-II}

(1.1) as xk = x1k + x2k . For the KIDS-II algorithm, we first compute x̃†1 , which is the
solution to the LS problem minx ‖Cx − d‖2. Then we apply Algorithm 3 to compute
the approximations to x̃†2 , where we denote the k-th approximation by x̃2k . The k-th

approximate solution of (1.1) by KIDS-II is xk = x̃†1 + x̃2k . In this experiment, all the
inner iterations are computed accurately.

Figure 1 shows the convergence history of the two algorithms with respect to the
true solution. Table 2 lists the relative errors of the solutions at the final iterations

Table 2 Relative errors of the solutions at the final iterations of KIDS-I and KIDS-II, and the relative errors
of the solutions computed by NS and DE

Example KIDS-I KIDS-II NS DE

1 9.92 × 10−12 7.29 × 10−12 7.26 × 10−12 7.26 × 10−12

2 2.04 × 10−11 1.10 × 10−9 4.18 × 10−12 4.18 × 10−12

3 6.55 × 10−15 6.37 × 10−15 6.37 × 10−15 6.37 × 10−15

4 7.64 × 10−13 1.62 × 10−12 6.46 × 10−13 6.94 × 10−13
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of KIDS-I and KIDS-II, as well as the relative errors of the solutions computed by NS
and DE. We have three key findings. First, for both algorithms, all the approximate
solutions eventually converge to the exact solution of the LSE problem, with accuracy
that is almost the same as, or slightly lower than, the solutions obtained by the NS
or DE methods. Second, both KIDS-I and KIDS-II exhibit a linear convergence rate
for the four test problems. Since the two algorithms are based on the operator-form
GKB process, we hypothesize that the convergence rate may share similarities with
the LSQR algorithm. However, a more detailed investigation is needed in the future to
confirm this. Third, compared with KIDS-II, KIDS-I requires fewer iterations to achieve
a solution with a given accuracy. However, it is not yet clear whether this is a general
property of the algorithms.

In Figure 2 we plot the curve corresponding to xk computed by KIDS-I at the final
iteration, alongside the true solution x†. It is important to note that the curves corre-
sponding to the true solutions are not smooth, as the operations used in constructing
the test problems can lead to oscillating vectors.We remark that constructing a smooth
true solution based on the proposed procedure for generating a test LSE problem is
quite challenging. From the figure, we observe that the computed solutions closely
match the true solution. These results demonstrate the effectiveness of the proposed
algorithms in iteratively solving LSE problems.
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Fig. 2 Curves for the true and computed solutions obtained by KIDS-I at the final iteration. (a) {D1, lp_bnl2};
(b){D2, r05}; (c) {cage9-I, cage9-II}; (d) {pf2177-I, pf2177-II}
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In this experiment, we investigate how the inaccuracy in computing the inner itera-
tions of both KIDS-I and KIDS-II affects the final accuracy of the approximate solutions.
For KIDS-I, at each iteration, we use LSQR with stopping tolerance τ to iteratively
solving (4.4) and (4.8) for approximating x†1 and x†2 , respectively. For KIDS-II, we
first compute an exact solution x̃†1 , and then use LSQR with stopping tolerance τ

to iteratively solving (4.8) for approximating x̃†2 . The stopping tolerance value τ for
LSQR are set to 10−10 and 10−8. For simplicity, we only present the results for the
first and third examples, as the results for the other two examples are similar. From
Figure 3, we observe that the value of τ significantly impacts the final accuracy of xk ,
with the accuracy being approximately on the order of O(τ ). On the other hand, the
convergence rate is not affected very much. It is important to investigate how the final
accuracy of the computed solution is influenced by the value of τ , especially because,
for large-scale problems, it is not feasible to compute the inner iterations accurately.
This aspect should be explored further in future work.

In this experiment, we explore how the solution accuracy of x̃†1 = argminx ‖Cx −
d‖2 influences the final accuracy of x†. To obtain an approximate x̃†1 , we apply the

0 10 20 30 40 50 60 70 80 90 100

Iteration

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
 e

rr
or

(a)

0 10 20 30 40 50 60 70 80 90 100

Iteration

10-12

10-10

10-8

10-6

10-4

10-2

100

R
el

at
iv

e 
 e

rr
or

(b)

0 10 20 30 40 50 60 70 80 90 100

Iteration

10-15

10-10

10-5

100

R
el

at
iv

e 
 e

rr
or

(c)

0 10 20 30 40 50 60 70 80 90 100

Iteration

10-15

10-10

10-5

100

R
el

at
iv

e 
 e

rr
or

(d)

Fig. 3 The convergence history of KIDS-I and KIDS-II with respect to the true solution, where the inner
iterations are approximated by solving (4.4) and (4.8) byLSQRwith stopping tolerance τ . (a) {D1, lp_bnl2},
τ = 10−10; (b) {D1, lp_bnl2}, τ = 10−8; (c) {cage9-I, cage9-II}, τ = 10−10; (d) {cage9-I, cage9-II},
τ = 10−8
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LSQR algorithm to solve minx ‖Cx − d‖2 with a stopping tolerance set to τ1. The
inner iteration is approximated by solving (4.8) using the LSQR algorithm, with the
stopping tolerance set to τ2. We only show the experimental results for the first exam-
ple, as the results for the other examples are similar. First, we set τ1 = 10−10 and
τ1 = 10−8, respectively, and set τ2 = 0, meaning that we compute the inner iteration
accurately. The convergence history is shown in Fig. 4a. We observe that an inaccu-
rate x̃†1 affects the final accuracy of x†, even when the inner iterations are computed
accurately. Second, we set τ1 = τ2 = 10−10 and τ1 = τ2 = 10−8, respectively. The
convergence history is shown in Fig. 4b. We observe that when the inner iterations are
performed with the same accuracy as x̃†1 , then the final accuracy of x† is comparable
to the accuracy achieved when the inner iterations are computed accurately. Since the
solution error of x̃†1 may be amplified in the subsequent computation, analyzing the

impact of the inaccuracy in x̃†1 on the final accuracy of x
† is more complex than simply

analyzing the inner iterations. This also implied that KIDS-II can be more susceptible
to computational errors than KIDS-I. A systematic comparison of the two algorithms
and their susceptibility to computational errors will be explored in future work.

5.2 Large-scale problems

We propose the following steps to construct a large-scale LSE problem. To clearly
indicate the dimensions of each block matrix, we use 1r to denote a vector of size
r × 1 with all entries equal to 1, and use 0r to denote either a zero matrix of size r × r
or a zero vector of size r × 1, depending on the context.

(1) Given positive integers n, r1, r2 and r3, satisfying r1 + r2 + r3 = n. Let

A =
⎛
⎝
Ir1

�A

0r3

⎞
⎠ D, C =

⎛
⎝
0r1

�C

Ir3

⎞
⎠ D,

Fig. 4 The convergence history of KIDS-IIwith respect to the true solution, where x̃†1 = argminx ‖Cx−d‖2
is computed by LSQR with stopping tolerance τ1, and the inner iteration is approximated by solving (4.8)
by LSQR with stopping tolerance τ2. The test example is {D1, lp_bnl2}
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where �A = diag(a) with a = linspace(0.99,0.01,r2), �C = (Ir2 −
�2

A)1/2, and D = diag(d) with d = linspace(1,100,n).
(2) Compute the following matrix B ∈ R

n×r1 whose columns span N(C):

B = D−1

⎛
⎝
Ir1
0r2
0r3

⎞
⎠ .

(3) LetG = ATA+CTC and z1 = (0Tr1 , 1
T
r2 , 0

T
r3)

T. Compute x†1 = Gz1 and d = Cx†1 .

(4) Let z2 = linspace(100,1,r1)
T. Compute x†2 = Bz2 and b = Ax†2 .

(5) Compute x† = x†1 + x†2 .

Using Theorem 3.2 and Theorem 3.3, we can verify that the above construc-
tion ensures that x†1 is the minimum 2-norm solution of (3.3) with K = C and

L = A, and x†2 is the minimum 2-norm solutions of (3.12). In the experiment,
we fix r1 = 200, r2 = 300, while varying the value of r3, which leads to
n = 6000, 8000, 10000, 12000, 14000, 16000, 18000.

We use the above large-scale problems to evaluate the performance of KIDS-I and
KIDS-II on large sparse LSE problems, comparing them with the NS and DE methods.
The comparison of the relative errors of the solutions are shown in Table 3, where
the corresponding total iterations of KIDS-I and KIDS-II are shown in parentheses.
The corresponding running time of both the methods are listed in Table 4. For n =
6000, 8000, 10000, 12000, 14000, we test both the direct methods and the iterative
methods, where all inner iterations are computed either accurately (i.e., τ = 0) or
approximately by solving (4.4) and (4.8) with LSQR using a stopping tolerance of
τ = 10−12. For n = 16000, 18000, we only apply KIDS-I and KIDS-IIwith τ = 10−12.

As shown in Table 3, both KIDS-I and KIDS-II with τ = 0 achieve very low relative
errors across all tested problem sizes. The relative errors of KIDS-I are only slightly
higher than those of the two directmethods, which typically serve as baselines for eval-
uating the accuracy of numerical algorithms. Meanwhile, the relative errors of KIDS-II
are consistently slightly higher than those of KIDS-I for all tested problem sizes. Since
KIDS-I and KIDS-IIwith τ = 0 rely on matrix factorizations to compute the inner itera-
tions, their running time grows in amanner similar to that of the direct methodsNS and
DE. This trend is clearly illustrated in Table 4, where all four methods exhibit compa-
rable total running times for problem sizes n = 6000, 8000, 10000, 12000, 14000.

As shown in both Tables 3 and 4, when the inner iterations are computed approxi-
mately with τ = 10−12, the relative errors of KIDS-I and KIDS-II are higher compared
to those obtained with τ = 0. However, the running time is significantly reduced,
particularly for large-scale problems since matrix factorizations are no longer used.
This makes them much faster than the direct methods on large sparse LSE problems.
These results demonstrate that relaxing the inner iteration precision offers a practical
trade-off between solution accuracy and computational efficiency. We remark that for
our large sparse matrices, solving (4.4) and (4.8) using LSQR converges very quickly,
often within just a few iterations. However, for real-world large-scale problems, the
inner iterations may require more time. Even so, they can still be more efficient than
direct methods, especially if the inner iteration precision is moderately relaxed.
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Table 4 Comparison of running times (in seconds) for KIDS-I, KIDS-II, NS, and DE

n KIDS-I KIDS-II NS DE
τ = 0 τ = 10−12 τ = 0 τ = 10−12

6000 98.24 0.55 103.75 0.52 97.10 78.65

8000 244.69 0.58 242.86 0.65 227.14 181.77

10000 451.59 0.83 464.38 1.14 418.68 360.21

12000 702.43 0.88 732.80 0.85 681.10 593.02

14000 1186.49 0.95 1161.88 0.84 1073.51 954.86

16000 – 1.02 – 0.99 – –

18000 – 1.10 – 1.09 – –

Test for operator-formmatrices A and C In this experiment, we construct two large-
scale linear operators A ∈ R

(n−2)×n and C ∈ R
r×n in a matrix-free fashion, i.e.,

without explicitly forming the matrices. Both operators are implemented as function
handles that compute matrix-vector products efficiently, which is critical for large-
scale problems where explicit matrices are infeasible.

The operator-formmatrix A is a modified version of the discrete second-order finite
difference operator defined in (5.3), where the diagonal entries are replaced by 5, i.e.,

(Ax)i = xi − 5xi+1 + xi+2, i = 1, . . . , n − 2,

where x ∈ R
n is an input vector. The matrix A is implemented as a function handle

Afun(x,mode) supporting the following two modes:

• mode = ‘notransp’ computes the forward multiplication y = Ax , returning
a vector y ∈ R

n−2 with components

yi = xi − 5xi+1 + xi+2, i = 1, . . . , n − 2.

• mode = ‘transp’ computes the transpose multiplication y = ATx , where
x ∈ R

n−2 and the output y ∈ R
n is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1 = x1, y2 = −5x1 + x2,

yi = xi−2 − 5xi−1 + xi , i = 3, . . . , n − 2,

yn−1 = −5xn−2 + xn−3,

yn = xn−2.

The operator-form matrix C ∈ R
r×n is constructed as follows. We set r = n − t

with t = 500, and construct the operator C : Rn → R
r as

C = MPT,
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where P ∈ R
n×n is an orthogonal matrix generated by the Matlab built-in function

gallery(‘orthog’, n), and M = (
Ir 0

) ∈ R
r×n . Thus, for any vector x ∈ R

n

we have
Cx = M(PTx) = (PTx)1:r ,

and for any y ∈ R
r we have

CT y = P

(
y
0

)
.

Thus, the matrix C is implemented as a function handle Cfun(x,mode) with the
following two modes:

• mode = ‘notransp’ computes the forward product

y = Cx = (PTx)1:r .

• mode = ‘transp’ computes the transpose product

y = CTx = P

(
x
0

)
.

From the above construction, an explicit basis for N(C) is given by the columns of
the matrix

B = P

(
0
Id

)
∈ R

n×t .

We set n = 10000 and follow the approach outlined in Section 5.1 to construct
an LSE problem. For this problem, methods based on matrix factorizations are not
applicable; instead, iterativemethods that rely solely onmatrix-vector products should
be used.

Figure 5 presents the experimental results, where 20 iterations are performed for
both KIDS-I and KIDS-II. In each case, the inner iterations are approximated by solving

0 2 4 6 8 10 12 14 16 18 20

Iteration

10-8

10-7

10-6

10-5

10-4

10-3

R
el

at
iv

e 
 e

rr
or

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

True solution
Computed solution

(b)

Fig. 5 Test results for the LSE problem with operator-form matrices. (a) Convergence history of KIDS-I and
KIDS-II with respect to the true solution. (b) Curves for the true and computed solutions obtained by KIDS-I
at the final iteration
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(4.4) and (4.8) using LSQR, with a stopping tolerance of τ = 10−8. It can be observed
that the convergence is very fast, possibly because the dominant components of the true
solution lies in a low-dimensionalKrylov subspace generated byKIDS-I and KIDS-II.We
note, however, that for a general LSE problem, the convergence may be much slower
than in this example. Constructing a suitable example that clearly demonstrates such
slow convergence is not a straightforward task. The final accuracy of the solutions
computed by both KIDS-I and KIDS-II are influenced by the value of τ , consistent
with the results demonstrated in Section 5.1. We also plot the curve corresponding
to xk computed by KIDS-I at the final iteration, alongside the true solution x†. These
results demonstrate the effectiveness of the proposed algorithms for LSE problems
with operator-form matrices.

6 Conclusion and outlook

In this paper, we have introduced a novel approach to solving the LSE problems
by reformulating them as operator-type LS problems. This perspective allows us to
decompose the solution of the LSE problem into two components, each corresponding
to a simpler operator-based LS problem. We have derived two types of decomposed-
form solutions, and building on this decomposition, we have developed two Krylov
subspace based iterative methods that efficiently approximate the solution without
matrix factorizations. The two proposed algorithms, named KIDS-I and KIDS-II, follow
a nested inner-outer structure, where the inner subproblem can be computed iteratively.
We have proposed an approach to construct the LSE problems for testing purposes,
and used several test examples to demonstrate the effectiveness of the algorithms.

The primary computational bottleneck of the proposed algorithms lies in the inner
iteration. In future work, we plan to explore additional theoretical and computational
strategies to improve the efficiency of this step and thereby accelerate the overall
performance of the proposed algorithms.
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35. Scott, J., Tůma, M.: A computational study of using black-box QR solvers for large-scale sparse-dense
linear least squares problems. ACM Trans. Math. Softw. (TOMS) 48(1), 1–24 (2022)

36. Eldén, L.: A weighted pseudoinverse, generalized singular values, and constrained least squares prob-
lems. BIT Numer. Math. 22, 487–502 (1982)

37. Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares.
ACM Trans. Math. Software 8, 43–71 (1982)

38. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans. Math. Software
(TOMS) 38(1), 1–25 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Krylov iterative methods for linear least squares problems with linear equality constraints
	Abstract
	1 Introduction
	2 LSE problem and its computation
	3 Decomposed-form solution of the LSE problem
	4 Krylov iterative methods for the LSE problem
	4.1 Iterative method for computing CA†
	4.2 Iterative method for computing AmathcalN(C)†
	4.3 Two Krylov iterative methods for the LSE problem

	5 Numerical experiments
	5.1 Small- and medium-scale problems
	5.2 Large-scale problems

	6 Conclusion and outlook
	Acknowledgements
	References


