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Abstract. Computing the regularized solution of Bayesian linear inverse problems as well as
the corresponding regularization parameter is highly desirable in many applications. This paper
proposes a novel iterative method, termed the Projected Newton method (PNT), that can simultane-
ously update the regularization parameter and solution step by step without requiring any expensive
matrix inversions or decompositions. By reformulating the Tikhonov regularization as a constrained
minimization problem and leveraging its Lagrangian function, a Newton-type method coupled with a
Krylov subspace method is designed for the unconstrained Lagrangian function. The resulting PNT
algorithm only needs solving a small-scale linear system to get a descent direction of a merit function
at each iteration, thus significantly reducing computational overhead. Rigorous convergence results
are proved, showing that PNT always converges to the unique regularized solution and the corre-
sponding Lagrangian multiplier. Experimental results on both small-scale and large-scale Bayesian
inverse problems demonstrate its excellent convergence property, robustness, and efficiency. Given
that the most demanding computational tasks in PNT are primarily matrix-vector products, it is
particularly well-suited for large-scale problems.
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1. Introduction. Inverse problems arise in various scientific and engineering
fields, where the aim is to recover unknown parameters or functions from noisy ob-
served data. Applications include image reconstruction, computed tomography, med-
ical imaging, geoscience, data assimilation and so on [6, 25, 28, 30, 49]. A linear
inverse problem of the discrete form can be written as

\bfitb =\bfitA \bfitx + \bfitepsilon ,(1.1)

where \bfitx \in \BbbR n is the underlying quantity to reconstruct, \bfitA \in \BbbR m\times n is the discretized
forward model matrix, and \bfitb \in \BbbR m is the vector of observation with noise \bfitepsilon . We
assume that the distribution of \bfitepsilon is known, which follows a zero mean Gaussian
distribution with positive definite covariance matrix \bfitM , i.e., \bfitepsilon \sim \scrN (0,\bfitM ). A big
challenge for reconstructing a good solution is the ill-posedness of inverse problems,
which means that there may be multiple solutions that fit the observation equally
well, or the solution is very sensitive with respect to observation perturbation.

To overcome the ill-posedness, regularization is a commonly used technique.
From a Bayesian perspective [28, 53], this corresponds to adding a prior distribu-
tion of the desired solution to constrain the set of possible solutions to improve
stability and uniqueness. By treating \bfitx and \bfitb as random variables, the obser-
vation vector \bfitb has a conditional probability density function (pdf) of the form
p(\bfitb | \bfitx ) \propto exp

\bigl( 
 - 1

2\| \bfitA \bfitx  - \bfitb \| 2
\bfitM  - 1

\bigr) 
. To get a regularized solution, this paper considers

\ast Received by the editors March 12, 2024; accepted for publication (in revised form) April 4, 2025;
published electronically July 3, 2025.

https://doi.org/10.1137/24M1645838
\dagger School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010 Aus-

tralia (haibo.li@unimelb.edu.au).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1439

D
ow

nl
oa

de
d 

07
/0

3/
25

 to
 1

28
.2

50
.0

.3
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/24M1645838
mailto:haibo.li@unimelb.edu.au


1440 HAIBO LI

a Gaussian prior about the desired solution with the form \bfitx \sim \scrN (0, \mu  - 1\bfitN ), where
\bfitN is a positive definite covariance matrix. Then the Bayes' formula leads to

p(\bfitx | \bfitb , \lambda )\propto p(\bfitx | \lambda )p(\bfitb | \bfitx )\propto exp

\biggl( 
 - 1

2
\| \bfitA \bfitx  - \bfitb \| 2\bfitM  - 1  - \mu 

2
\| \bfitx \| 2\bfitN  - 1

\biggr) 
,

where \| \bfitx \| \bfitB := (\bfitx \top \bfitB \bfitx )1/2 is the \bfitB -norm of \bfitx for a positive definite matrix \bfitB .
Maximizing the posterior pdf p(\bfitx | \bfitb , \lambda ) leads to the Tikhonov regularization problem

min
\bfitx \in \BbbR n

\{ \| \bfitA \bfitx  - \bfitb \| 2\bfitM  - 1 + \mu \| \bfitx \| 2\bfitN  - 1\} ,(1.2)

where the regularization term \mu \| \bfitx \| 2
\bfitN  - 1 enforces extra structure on the solution that

comes from the prior distribution of \bfitx .
The parameter \mu in the Gaussian prior \scrN (0, \mu  - 1\bfitN ) is crucial for obtaining a

good regularized solution, which controls the trade-off between the data-fit term and
regularization term. There is tremendous effort in determining a proper value of \mu .
For the standard 2-norm problem, i.e., \bfitM = \bfitI and \bfitN = \bfitI , the classical parameter-
selection methods include the L-curve criterion [23], generalized cross-validation [22],
unbiased predictive risk estimation [47], and discrepancy principle [40]. There are
also some iterative methods based on solving a nonlinear equation of \mu ; see, e.g.,
[2, 20, 37, 46]. However, the aforementioned methods cannot be directly applied to
(1.2). A common procedure needs to first transform (1.2) into standard 2-norm form

min
\bfitx \in \BbbR n

\{ \| \bfitL M (\bfitA \bfitx  - \bfitb )\| 22 + \mu \| \bfitL N\bfitx \| 22\} ,(1.3)

where \bfitM  - 1 = \bfitL \top 
M\bfitL M and \bfitN  - 1 = \bfitL \top 

N\bfitL N are the Cholesky factorizations, and then
apply the parameter-selection methods. This procedure needs the matrix inversions
of \bfitM and \bfitN as well as the Cholesky factorizations of \bfitM  - 1 and \bfitN  - 1. For large-
scale matrices, these two types of computations are almost impossible or extremely
expensive.

For large-scale problems, there exist some iterative regularization methods that
can avoid choosing \mu in advance. A class of commonly used iterative methods is based
on Krylov subspace [35], where the original linear system is projected onto lower-
dimensional subspaces to become a series of small-scale problems [19, 27, 33, 42]. For
dealing with the general-form Tikhonov regularization term \| \bfitL N\bfitx \| 22, some recent
Krylov iterative methods include [26, 29, 34, 39, 45] and so on. When the Cholesky
factor \bfitL N is not accessible, a key difficulty is dealing with the prior covariance \bfitN ,
which means that the subspaces should be constructed elaborately such that the prior
information of \bfitx can be effectively incorporated into these subspaces [8, 32]. Such
methods have been proposed in [7, 8, 9], where a statistically inspired priorcondition-
ing technique is used to whiten the noise and the desired solution. However, these
methods still require large-scale matrix inversions and Cholesky factorizations, which
prohibits their applications to large-scale problems.

Recently, there are several Krylov methods for directly solving (1.1) without
choosing \mu in advance and can avoid the matrix inversions and Cholesky factor-
izations [12, 32]. These methods use the generalized Golub--Kahan bidiagonalization
(gen-GKB), which can iteratively reduce the original large-scale problem to small-scale
ones and generate Krylov subspaces that effectively incorporate the prior information
of \bfitx encoded by \bfitN . In [32], the regularization effect of the proposed method comes
from early stopping the iteration, where the iteration number plays the role of the
regularization parameter, while in [12], the authors proposed a hybrid regularization
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PROJECTED NEWTON METHOD 1441

method that simultaneously computes the regularized parameter and solution step by
step. Although these two methods are very efficient for large-scale problems, there
may be some issues in certain situations. The method in [32] only computes a good
regularized solution but not a good \mu . However, in some applications, we need an
accurate estimate of \mu to get the posterior distribution of \bfitx for sampling and un-
certainty quantification [17, 52, 53]. For the hybrid method in [12], the convergence
property does not have a solid theoretical foundation, and it has been numerically
found that the method sometimes does not converge to a good solution, which is a
common potential flaw for hybrid methods [11, 48].

Many optimization methods have been proposed for inverse problems, particularly
those stemming from image processing that leads to total variation regularization or
\ell p regularization. These methods include the Bregman iteration [21, 43, 56], iterative
shrinkage thresholding [3, 15], and many others [1, 36, 54]. However, these meth-
ods either need a good parameter \mu in advance or cannot well deal with \bfitM  - 1 and
\bfitN  - 1. In [31] the author proposed a modification of the Newton method that can
iteratively compute a good \mu and regularized solution simultaneously. However, this
method needs to solve a large-scale linear system at each iteration, which is very costly
for large-scale problems. This method was improved in [13, 14], where the Newton
method is successfully combined with a Krylov subspace method to get a so-called
projected Newton method. Compared with the original method, the projected New-
ton method only needs to solve a small-scale linear system at each iteration, thereby
very efficient for large-scale Tikhonov regularization (1.3). However, for solving (1.2),
this method needs to compute \nabla ( 12\| \bfitx \| 2\bfitN  - 1) = \bfitN  - 1\bfitx to construct subspaces, which
is also very costly. Besides, their methods lack rigorous proof of convergence.

In this paper, we develop a new efficient iterative method for (1.2) that simulta-
neously updates the regularization parameter and solution step by step, and it does
not require any expensive matrix inversions or Cholesky factorizations. This method
follows the Newton-type approach for noise constrained Tikhonov regularization pro-
posed in [13], where the gen-GKB process is integrated to compute a projected Newton
direction by solving a small-scale linear system at each iteration, thereby it is also
named the projected Newton method (PNT). The main contributions of this paper are
listed as follows:

\bullet We reformulate the regularization of the original Bayesian linear inverse prob-
lem as a noise constrained minimization problem and prove the existence,
uniqueness, and positivity of its Lagrangian multiplier \lambda under a very reason-
able assumption. The correspondence between the constrained minimization
problem and Tikhonov regularization (1.2) is connected by \mu = 1/\lambda .

\bullet We propose a gen-GKB based Newton-type method to compute the regular-
ized solution by optimizing its Lagrangian function and obtaining the corre-
sponding Lagrangian multiplier. A series of Krylov subspaces is generated
by gen-GKB, avoiding the need for costly matrix inversions or Cholesky fac-
torizations. Using the subspace projection technique, we need only solve a
small-scale linear system to compute the descent direction at each iteration.

\bullet A rigorous proof of convergence for the proposed method is provided. With
a very practical initialization (\bfitx 0, \lambda 0), we prove that PNT always converges
to the unique solution of the constrained minimization problem and the cor-
responding Lagrangian multiplier.

We use both small-scale and large-scale inverse problems to test the proposed
method and compare it with other state-of-the-art methods. The experimental re-
sults demonstrate excellent convergence properties of PNT, and it is very robust and
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1442 HAIBO LI

efficient for regularizing Bayesian linear inverse problems. Since the most computa-
tionally intensive operations in PNT primarily involve matrix-vector products, it is
especially appropriate for large-scale problems.

This paper is organized as follows. In section 2, we formulate the noise constrained
minimization problem for regularizing (1.1) and study its properties. In section 3, we
propose the PNT method. In section 4, we prove the convergence of PNT. Numerical
results are presented in section 5 and conclusions are provided in section 6.

2. Noise constrained minimization for Bayesian inverse problems. In
order to get a good estimate of \mu in (1.2), the discrepancy principle (DP) criterion is
commonly used, which depends on the variance of the noise. Based on DP, we can
rewrite (1.2) as an equivalent form of noise constrained minimization problem.

2.1. Noise constrained minimization. If \bfitepsilon \sim \scrN (0, \sigma 2\bfitI ) is a white Gaussian
noise, the DP criterion states that the 2-norm discrepancy between the data and
predicted output \| \bfitA \bfitx (\mu ) - \bfitb \| 2 should be of the order of \| \bfitepsilon \| 2 \approx 

\surd 
m\sigma , where \bfitx (\mu ) is

the solution to (1.2); see [28, sect. 5.6]. If \bfitepsilon is a general Gaussian noise, notice that
(1.1) leads to \bfitL M\bfitb =\bfitL M\bfitA \bfitx +\bfitL M\bfitepsilon , and \bfitL M\bfitepsilon \sim \scrN (0,\bfitI ), thereby this transformation
whitens the noise. Since \=\bfitepsilon := \bfitL M\bfitepsilon is a white Gaussian noise with zero mean and
covariance \bfitI , it follows that

\BbbE 
\bigl[ 
\| \=\bfitepsilon \| 22

\bigr] 
=\BbbE 

\bigl[ 
trace

\bigl( 
\=\bfitepsilon \top \=\bfitepsilon 

\bigr) \bigr] 
=\BbbE 

\bigl[ 
trace

\bigl( 
\=\bfitepsilon \=\bfitepsilon \top 

\bigr) \bigr] 
= trace

\bigl( 
\BbbE 
\bigl[ 
\=\bfitepsilon \=\bfitepsilon \top 

\bigr] \bigr) 
= trace (\bfitI ) =m.

Therefore, the DP for (1.1) can be written as

\| \bfitA \bfitx (\mu ) - \bfitb \| 2\bfitM  - 1 = \| \bfitL M\bfitA \bfitx (\mu ) - \bfitL M\bfitb \| 22 = \tau m,(2.1)

where \tau is chosen to be marginally greater than 1, such as \tau = 1.01.
Using this expression of DP, we rewrite the regularization of (1.1) as the noise

constrained minimization problem

min
\bfitx \in \BbbR n

1

2
\| \bfitx \| 2\bfitN  - 1 s.t.

1

2
\| \bfitA \bfitx  - \bfitb \| 2\bfitM  - 1 \leq \tau m

2
,(2.2)

where its Lagrangian is

\scrL (\bfitx , \lambda ) = 1

2
\| \bfitx \| 2\bfitN  - 1 +

\lambda 

2

\bigl( 
\| \bfitA \bfitx  - \bfitb \| 2\bfitM  - 1  - \tau m

\bigr) 
(2.3)

with \lambda \geq 0 the Lagrangian multiplier. To further investigate (2.2) and (2.3), we first
state the following basic assumption, which is used throughout this paper.

Assumption 1. For all \bfitx \in \{ \bfitx \in \BbbR n : \| \bfitA \bfitx  - \bfitb \| \bfitM  - 1 =min\} , it holds that

\| \bfitA \bfitx  - \bfitb \| 2\bfitM  - 1 < \tau m< \| \bfitb \| 2\bfitM  - 1 .(2.4)

The first inequality means that the naive solutions to (1.1) fit the observation very
well, and it ensures the feasible set of (2.2) is nonempty. The second inequality comes
from the condition \| L\bfitM \bfitepsilon \| 2 < \| L\bfitM \bfitb \| 2, meaning that the noise does not dominate
the observation, which ensures the effectiveness of the regularization. Under this
assumption, the following result describes the solution to (2.2).

Theorem 2.1. The noise constrained minimization (2.2) has a unique solution
\bfitx \ast satisfying \| \bfitA \bfitx \ast  - \bfitb \| 2

\bfitM  - 1 = \tau m. Furthermore, there is a unique \lambda \ast > 0, which is
the Lagrangian multiplier corresponding to \bfitx \ast in (2.3).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PROJECTED NEWTON METHOD 1443

Proof. Let \varphi (\bfitx ) := 1
2 (\| \bfitA \bfitx  - \bfitb \| 2

\bfitM  - 1 - \tau m), which is a convex function. In (2.2) we
seek solutions to min 1

2\| \bfitx \| 2\bfitN  - 1 in the feasible set S := \{ \bfitx \in \BbbR n : \varphi (\bfitx ) \leq 0\} , which is
the 0-lower level set of \varphi (\bfitx ). Note that S is a compact and convex set and 1

2\| \bfitx \| 2\bfitN  - 1 is
continuous and strictly convex. Thus, there is a unique solution \bfitx \ast to (2.2). Suppose
\lambda \ast is a Lagrangian multiplier corresponding to \bfitx \ast . By the Karush--Kuhn--Tucker
(KKT) condition [41, sect. 12.3], the solution (\bfitx \ast , \lambda \ast ) satisfies

\left\{ 
  
  

\bfitN  - 1\bfitx \ast + \lambda \ast \nabla \varphi (\bfitx \ast ) = 0,

\lambda \ast \varphi (\bfitx \ast ) = 0,

\lambda \ast \geq 0.

If \lambda \ast = 0, then \bfitN  - 1\bfitx \ast , leading to \bfitx \ast = 0. This means 0 \in S, i.e. \| \bfitb \| 2
\bfitM  - 1 \leq \tau m, a

contradiction. Consequently, it must hold \lambda \ast > 0. From the relation \lambda \ast \varphi (\bfitx \ast ) = 0 we
have \varphi (\bfitx \ast ) = 0, i.e. \| \bfitA \bfitx \ast  - \bfitb \| 2

\bfitM  - 1 = \tau m.
For the uniqueness of \lambda \ast , here we give two proofs. In the first proof, we note

that \nabla \varphi (\bfitx \ast ) = \bfitA \top \bfitM  - 1(\bfitA \bfitx \ast  - \bfitb ) \not = 0 since \bfitx \ast /\in \{ \bfitx \in \BbbR n : \| \bfitA \bfitx  - \bfitb \| \bfitM  - 1 = min\} 
by Assumption 1. Therefore, the linear independence constraint qualification (LICQ)
holds at \bfitx \ast , which leads to the uniqueness of \lambda \ast ; see [41, sect. 12.3].

In the second proof, we note that for any \lambda \geq 0, there is a unique \bfitx \lambda that solves
the first equality of the KKT condition:

\bfitN  - 1\bfitx + \lambda \nabla \varphi (\bfitx ) = 0 \leftrightarrow (\bfitN  - 1 + \lambda \bfitA \top \bfitM  - 1\bfitA )x= \lambda \bfitA \top \bfitM  - 1\bfitb ,(2.5)

since \bfitN  - 1+\lambda \bfitA \top \bfitM  - 1\bfitA is positive definite. Here we prove a stronger property: there
exist a unique \lambda \geq 0 such that \| \bfitA \bfitx \lambda  - \bfitb \| 2

\bfitM  - 1 = \tau m. The existence of such a \lambda has
been proved, since \bfitx \ast =\bfitx \lambda \ast . For the uniqueness, define two functions

K(\lambda ) :=
1

2
\| \bfitx \lambda \| 2\bfitN  - 1 , H(\lambda ) :=

1

2

\bigl( 
\| \bfitA \bfitx \lambda  - \bfitb \| 2\bfitM  - 1  - \tau m

\bigr) 
.

Note that \scrL (\bfitx , \lambda ) is strictly convex for a fixed \lambda > 0, which has the unique minimizer
\bfitx \lambda . Thus, for any two positive \lambda 1 \not = \lambda 2, we have \scrL (\bfitx \lambda 1

, \lambda 1)< \scrL (\bfitx \lambda 2
, \lambda 1)\leftrightarrow K(\lambda 1) +

\lambda 1H(\lambda 1) < K(\lambda 2) + \lambda 1H(\lambda 2), since \bfitx \lambda 1
\not = \bfitx \lambda 2

; see Lemma 2.2. Similarly, we have
K(\lambda 2) + \lambda 2H(\lambda 2) < K(\lambda 1) + \lambda 2H(\lambda 1). Adding the above two inequalities leads to
(\lambda 1  - \lambda 2)(H(\lambda 1) - H(\lambda 2))< 0, meaning that H(\lambda ) is a strictly monotonic decreasing
function. Therefore, there is a unique \lambda such that H(\lambda ) = 0.

We emphasize that Assumption 1 is essential for ensuring the validity of Theorem
2.1 and plays a key role in the regularization of (1.1). If the left inequality of Assump-
tion 1 is violated, then either the feasible set of (2.2) is empty when \| \bfitA \bfitx  - \bfitb \| 2

\bfitM  - 1 > \tau m
or it becomes the equivalent least squares problem

min
1

2
\| \bfitx \| 2\bfitN  - 1 s.t. \| \bfitA \bfitx  - \bfitb \| 2\bfitM  - 1 =min

when \| \bfitA \bfitx  - \bfitb \| 2
\bfitM  - 1 = \tau m. The latter case means that no regularization is required,

which makes the problem much easier to handle. The right inequality of Assumption 1
ensures the positivity of the Lagrangian multiplier \lambda \ast , which is a necessary condition.
To see it, let us assume there exist a \lambda \ast > 0 and follow the second proof for the
uniqueness of \lambda \ast . From the KKT condition it must hold that \varphi (\bfitx \lambda \ast ) = H(\lambda \ast ) = 0.
Now H(0) = 1

2 (\| \bfitb \| 2\bfitM  - 1  - \tau m)\leq 0 and H(+\infty ) = 1
2 (\| \bfitA \bfitx  - \bfitb \| 2M - 1  - \tau m)< 0 for any

\bfitx \in argmin\bfitx \in \BbbR n \| \bfitA \bfitx  - \bfitb \| \bfitM  - 1 . Since H(\lambda ) is strictly monotonically decreasing, the
only possible zero root of H(\lambda ) is \lambda = 0, which leads to a contradiction. In this case, it
implies that the noise in b is too large, resulting in \lambda \ast = 0 and a very poor regularized
solution \bfitx \ast = 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1444 HAIBO LI

Lemma 2.2. For each \lambda \geq 0, the regularization problem

min
\bfitx \in \BbbR n

\{ \lambda \| \bfitA \bfitx  - \bfitb \| 2\bfitM  - 1 + \| \bfitx \| 2\bfitN  - 1\} (2.6)

has the unique solution \bfitx \lambda . If \lambda 1 \not = \lambda 2, then \bfitx \lambda 1 \not =\bfitx \lambda 2 .

Proof. Note that the normal equation of (2.6) is equivalent to (2.5). Thus, \bfitx \lambda is
the unique solution to (2.6). Using the Cholesky factors of \bfitM  - 1 and \bfitN  - 1, and notic-
ing that \bfitL N is invertible, we can write the generalized singular value decomposition
(GSVD) [55] of \{ \bfitL M\bfitA ,\bfitL N\} as \bfitL M\bfitA =\bfitU A\Sigma A\bfitZ 

 - 1, \bfitL N =\bfitU N\Sigma N\bfitZ  - 1 with

\bfSigma A =

\biggl( 
\bfitD A r

\bfzero m - r
r n - r

\biggr) 
, \bfSigma N =

\biggl( 
\bfitD N r

\bfitI n - r
r n - r

\biggr) 
,

where \bfitU A \in \BbbR m\times m and \bfitU N \in \BbbR n\times n are orthogonal, \bfitZ = (\bfitz 1, . . . ,\bfitz n) in nonsingular,
r = rank(\bfitA ), and \bfitD A = diag(\sigma 1, . . . , \sigma r) with 1 > \sigma 1 \geq \cdot \cdot \cdot \geq \sigma r > 0 and \bfitD N =
diag(\rho 1, . . . , \rho r) with 0 < \rho 1 \leq \cdot \cdot \cdot \leq \rho r < 1, such that \sigma 2

i + \rho 2i = 1. Then \bfitx \lambda can
be expressed as \bfitx \lambda =

\sum r
i=1

\lambda \sigma i

\lambda \sigma 2
i+\rho 2

i
(\bfitu \top 

A,i\bfitL M\bfitb )\bfitz i where \bfitu A,i is the ith column of \bfitU A.

Since \{ \bfitz i\} ri=1 are linear independent, if \bfitx \lambda 1
=\bfitx \lambda 2

, then it must hold that

\lambda 1\sigma i

\lambda 1\sigma 2
i + \rho 2i

=
\lambda 2\sigma i

\lambda 2\sigma 2
i + \rho 2i

\leftrightarrow (\lambda 1  - \lambda 2)\sigma i\rho 
2
i = 0, i= 1, . . . , r.

Since \sigma i\rho i > 0 for i= 1, . . . , r, we obtain \lambda 1 = \lambda 2.

Remark 1. From the proof of Theorem 2.1, we find that \lambda plays the role of \mu  - 1 in
(1.2), meaning that \bfitx (\mu ) =\bfitx \lambda if \lambda = \mu  - 1. In fact, there is a one-to-one correspondence
between (1.2) and (2.2). Note that \bfitx \ast =\bfitx \lambda \ast . Comparing (2.6) with (1.2), we can use
(\lambda \ast ) - 1 as a good estimate of the optimal regularization parameter.

Corollary 2.3. Let \BbbR + = [0,\infty ). Write the gradient of \scrL (\bfitx , \lambda ) as

F (\bfitx , \lambda ) =

\biggl( 
\lambda \bfitA \top \bfitM  - 1(\bfitA \bfitx  - \bfitb ) +\bfitN  - 1\bfitx 

1
2\| \bfitA \bfitx  - \bfitb \| 2

\bfitM  - 1  - \tau m
2

\biggr) 
.(2.7)

Then F (\bfitx , \lambda ) = 0 has a unique solution (\bfitx \ast , \lambda \ast ) in \BbbR n \times \BbbR +, which is the unique
minimizer and corresponding Lagrangian multiplier of (2.2).

2.2. Newton method. A modification of the Newton method was proposed in
[31] to solve the nonlinear equation F (\bfitx , \lambda ) = 0, which is referred to as the Lagrange
method since it is based on the Lagrangian of (2.2). In this method, the Jacobian
matrix of F (\bfitx , \lambda ) is first computed as

J(\bfitx , \lambda ) =

\biggl( 
\lambda \bfitA \top \bfitM  - 1\bfitA +\bfitN  - 1 \bfitA \top \bfitM  - 1(\bfitA \bfitx  - \bfitb )

(\bfitA \bfitx  - \bfitb )\top \bfitM  - 1\bfitA 0

\biggr) 
(2.8)

at the current iterate (\bfitx , \lambda ), and then it computes the Newton direction (\Delta \bfitx \top ,\Delta \lambda )\top 

by solving inexactly the linear system

J(\bfitx , \lambda )

\biggl( 
\Delta \bfitx 
\Delta \lambda 

\biggr) 
= - F (\bfitx , \lambda )(2.9)

using the MINRES solver [44]. We remark that this method is essentially a Newton--
Krylov method [5] for optimizing the nonlinear and nonconvex Lagrangian function
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PROJECTED NEWTON METHOD 1445

(2.3). It was shown that the computed (\Delta \bfitx ,\Delta \lambda ) is a descent direction for the merit
function

hw(\bfitx , \lambda ) =
1

2

\bigl( 
\| \nabla \bfitx \scrL (\bfitx , \lambda )\| 22 +w| \nabla \lambda \scrL (\bfitx , \lambda )| 2

\bigr) 

with a w > 0, which means that (\Delta \bfitx \top ,\Delta \lambda )\nabla hw(\bfitx , \lambda ) \leq 0. By a backtracking line
search strategy to determine a step length \gamma > 0, the iterate is updated as (\bfitx , \lambda )\leftarrow 
(\bfitx , \lambda ) + \gamma (\Delta \bfitx ,\Delta \lambda ).

An advantage of this method is that it can compute a good regularized solution
and its regularization parameter simultaneously. However, for large-scale problems,
we need to compute \bfitM  - 1 and \bfitN  - 1 to form F (\bfitx , \lambda ) and J(\bfitx , \lambda ), which is almost
impossible. Moreover, at each iteration, an (n+1)\times (n+1) linear system (2.9) needs
to be solved, which is very computationally expensive even if we only compute a less
accurate solution by an iterative algorithm.

In [13], the authors proposed a projected Newton method, where at each iteration,
the large-scale linear system (2.9) is projected to be a small-scale linear system that
can be solved cheaply. However, this method can only deal with the standard \ell 2 - \ell 2
regularization, which means we can only apply this method to (1.3) by the substitution
\=\bfitx = \bfitL N\bfitx , requiring the expensive Cholesky factorization of \bfitN  - 1. A generalization
of this method [14] can deal with a general-form regularization term. However, for
(2.2), it needs to compute \nabla ( 12\| x\| 2\bfitN  - 1) =\bfitN  - 1x to construct subspace for projecting
(2.9), also very costly.

3. Projected Newton method based on generalized Golub--Kahan bidi-
agonalization. To reduce expensive computations of the Newton method for large-
scale problems, we design a new projected Newton method to solve (2.2). This method
uses the gen-GKB to construct Krylov subspaces to compute projected Newton direc-
tions by only solving small-scale problems, and it does not need any expensive matrix
inversions or decompositions. This method is composed of the following three main
steps:
Step 1: Construct Krylov subspaces. We adopt gen-GKB to iteratively construct a

series of low-dimensional Krylov subspaces; see Algorithm 3.1.
Step 2: Compute the projected Newton direction. At each iteration, we compute the

projected Newton direction by solving a small-scale problem; see (3.12).
Step 3: Determine the step-length to update solution. We use the Armijo back-

tracking line search to determine a step-length and update the solution; see
Routine 1.

Algorithm 3.1. Generalized Golub--Kahan bidiagonalization (gen-GKB).

Input: \bfitA \in \BbbR m\times n, \bfitb \in \BbbR m, \bfitM \in \BbbR m\times m, \bfitN \in \BbbR n\times n

1: \=\bfits =\bfitM  - 1\bfitb , \beta 1 = \=\bfits \top \bfitb , \bfitu 1 = \bfitb /\beta 1, \=\bfitu 1 = \=\bfits /\beta 1

2: \=\bfitr =\bfitA \top \=\bfitu 1, \bfitr =\bfitN \=\bfitr 
3: \alpha 1 = (\bfitr \top \=\bfitr )1/2, \=\bfitv 1 = \=\bfitr /\alpha 1, \bfitv 1 = \bfitr /\alpha 1

4: for i= 1,2, . . . , k do

5: \bfits =\bfitA \bfitv i  - \alpha i\bfitu i, \=\bfits =\bfitM  - 1\bfits 
6: \beta i+1 = (\bfits \top \=\bfits )1/2, \bfitu i+1 = \bfits /\beta i+1, \=\bfitu i+1 = \=\bfits /\beta i+1

7: \=\bfitr =\bfitA \top \=\bfitu i+1  - \beta i+1\=\bfitv i, \bfitr =\bfitN \=\bfitr 
8: \alpha i+1 = (\bfitr \top \=\bfitr )1/2, \=\bfitv i+1 = \=\bfitr /\alpha i+1, \bfitv i+1 = \bfitr /\alpha i+1

9: end for

Output: \{ \alpha i, \beta i\} k+1
i=1 , \{ \bfitu i,\bfitv i\} k+1

i=1
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1446 HAIBO LI

In the next subsection, we present detailed derivations of the whole algorithm.
All the proofs can be found in subsection 3.2.

3.1. Derivation of projected Newton method. This subsection presents
detailed derivations for the above three steps.

Step 1. Construct Krylov subspaces by gen-GKB. The gen-GKB process has been
proposed for solving Bayesian linear inverse problems in [12, 32]. The basic idea is to
treat \bfitA as the compact linear operator

\bfitA : (\BbbR n, \langle \cdot , \cdot \rangle \bfitN  - 1)\rightarrow (\BbbR m, \langle \cdot , \cdot \rangle \bfitM  - 1), \bfitx \mapsto \rightarrow \bfitA \bfitx ,

where \bfitx and \bfitA \bfitx are vectors under the canonical bases of \BbbR n and \BbbR m, respectively.
Here the two inner products are defined as \langle \bfitx ,\bfitx \prime \rangle \bfitN  - 1 :=\bfitx \top \bfitN  - 1\bfitx \prime and \langle \bfity ,\bfity \prime \rangle \bfitM  - 1 :=
\bfity \top \bfitM  - 1\bfity \prime . Therefore, we can define

\bfitA \ast : (\BbbR m, \langle \cdot , \cdot \rangle \bfitM  - 1)\rightarrow (\BbbR n, \langle \cdot , \cdot \rangle \bfitN  - 1), \bfity \mapsto \rightarrow \bfitA \ast \bfity ,

which is the adjoint operator of \bfitA , by the relation \langle \bfitA \bfitx ,\bfity \rangle \bfitM  - 1 = \langle \bfitx ,\bfitA \ast \bfity \rangle \bfitN  - 1 . Note
that (\bfitA \bfitx )\top \bfitM  - 1\bfity =\bfitx \top \bfitN  - 1\bfitA \ast \bfity for any \bfitx \in \BbbR n and \bfity \in \BbbR m. Thus, the matrix-form
expression of \bfitA \ast is \bfitA \ast =\bfitN \bfitA \top \bfitM  - 1.

Applying the standard Golub--Kahan bidiagonalization (GKB) to the compact
operator \bfitA with starting vector \bfitb between the two Hilbert spaces (\BbbR n, \langle \cdot , \cdot \rangle \bfitN  - 1) and
(\BbbR m, \langle \cdot , \cdot \rangle \bfitM  - 1), we can obtain the gen-GKB process; see [10] for GKB for compact
operators. The basic recursive relations of gen-GKB are as follows:

\beta 1\bfitu 1 = \bfitb ,(3.1a)

\alpha i\bfitv i =\bfitA \ast \bfitu i  - \beta i\bfitv i - 1,(3.1b)

\beta i+1\bfitu i+1 =\bfitA \bfitv i  - \alpha i\bfitu i,(3.1c)

where \alpha i and \beta i are computed such that \| \bfitu i\| \bfitM  - 1 = \| \bfitv i\| \bfitN  - 1 = 1, and \bfitv 0 := 0.
The whole iterative process is summarized in Algorithm 3.1. For more details of the
derivation, please see [32].

We remark that computing with \bfitM  - 1 cannot be avoided, but for the most com-
monly encountered cases that \bfitepsilon is a Gaussian noise with uncorrelated components,
\bfitM is diagonal and thereby \bfitM  - 1 can be directly obtained. For applications that \bfitepsilon 
is a colored Gaussian noise such that \bfitM is not diagonal, computing \bfitM is the most
expensive operation. In these cases, the proposed PNT method based on gen-GKB
may not be the optimal choice.

The following result gives the basic property of gen-GKB; see [32] for the proof.

Proposition 3.1. The group of vectors \{ \bfitu i\} ki=1 is an \bfitM  - 1-orthonormal basis
of the Krylov subspace

\scrK k(\bfitA \bfitN \bfitA \top \bfitM  - 1,\bfitb ) = span\{ (\bfitA \bfitN \bfitA \top \bfitM  - 1)i\bfitb \} k - 1
i=0 ,(3.2)

and \{ \bfitv i\} ki=1 is an \bfitN  - 1-orthonormal basis of the Krylov subspace

\scrK k(\bfitN \bfitA \top \bfitM  - 1\bfitA ,\bfitN \bfitA \top \bfitM  - 1\bfitb ) = span\{ (\bfitN \bfitA \top \bfitM  - 1\bfitA )i\bfitN \bfitA \top \bfitM  - 1\bfitb \} k - 1
i=0 .(3.3)

Define \bfitU k+1 = (\bfitu 1, . . . ,\bfitu k+1) and \bfitV k+1 = (\bfitv 1, . . . ,\bfitv k+1). Then Proposition 3.1
indicates that \bfitU \top 

k+1\bfitM 
 - 1\bfitU k+1 = \bfitI and \bfitV \top 

k+1\bfitN 
 - 1\bfitV k+1 = \bfitI . We remark that gen-

GKB will eventually terminate in at most min\{ m,n\} steps, since the column rank of
\bfitU k or \bfitV k cannot exceed min\{ m,n\} . If we define the termination step as

kt :=max\{ k : \alpha k\beta k > 0\} ,(3.4)

then \bfitV k will eventually expand to be \bfitV kt
with kt \leq min\{ m,n\} .
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PROJECTED NEWTON METHOD 1447

By (3.1a)--(3.1c), we can write the k-step (k\leq kt) gen-GKB in the matrix-form

\beta 1\bfitU k+1e1 = \bfitb ,(3.5a)

\bfitA \bfitV k =\bfitU k+1\bfitB k,(3.5b)

\bfitN \bfitA \top \bfitM  - 1\bfitU k+1 =\bfitV k\bfitB 
\top 
k + \alpha k+1\bfitv k+1e

\top 
k+1,(3.5c)

where \bfite 1 and \bfite k+1 are the first and (k+1)th columns of the identity matrix of order
k+ 1, respectively, and

\bfitB k =

\left( 
       

\alpha 1

\beta 2 \alpha 2

\beta 3
. . .

. . . \alpha k

\beta k+1

\right) 
       
\in \BbbR (k+1)\times k.(3.6)

Note that \bfitB k has full column rank if k \leq kt. At the ktth iteration, it is possible
that either \beta kt+1 = 0 occurs first or \alpha kt+1 = 0 occurs first. For the former case, the
relations (3.5) are replaced by

\beta 1\bfitU kt
e1 = \bfitb ,(3.7a)

\bfitA \bfitV kt
=\bfitU kt

\bfitB kt
,(3.7b)

\bfitN \bfitA \top \bfitM  - 1\bfitU kt
=\bfitV kt

\bfitB \top 
kt
,(3.7c)

where \bfitB kt
is the first k\times k part of \bfitB kt

by discarding \beta kt+1.
Step 2. Compute the projected Newton direction. At the kth iteration, we update

\bfitx k \in span\{ \bfitV k\} and \lambda k from the previous ones. For any \bfitx \in span\{ \bfitV k\} of the form
\bfitx =\bfitV k\bfity with \bfity \in \BbbR k, define the projected gradient of \scrL (\bfitx , \lambda ) as

F (k)(\bfity , \lambda ) =

\biggl( 
\bfitV \top 

k

1

\biggr) 
F (\bfitx , \lambda )(3.8)

and the projected Jacobian of F (\bfitx , \lambda ) as

J (k)(\bfity , \lambda ) =

\biggl( 
\bfitV \top 

k

1

\biggr) 
J(\bfitx , \lambda )

\biggl( 
\bfitV k

1

\biggr) 
.(3.9)

Remark 2. Since gen-GKB must terminate at the ktth iteration and \bfitV k eventually
expands to be \bfitV kt

, we need to discuss the two different cases that k\leq kt and k > kt.
For notational simplicity, in the rest part of the paper, we use \bfitV k and \bfitB k by default
unless stated otherwise to denote

\bfitV k =

\Biggl\{ 
\bfitV k, k\leq kt,

\bfitV kt
, k > kt,

\bfitB k =

\Biggl\{ 
\bfitB k, k\leq kt,

\bfitB kt
, k > kt,

\bfitx k =

\Biggl\{ 
\bfitV k\bfity k, k\leq kt,

\bfitV kt
\bfity k, k > kt,

where \bfity \in \BbbR k for k\leq kt and \bfity \in \BbbR kt for k > kt. Moreover, for the case \beta kt+1 = 0, the
relations (3.5) are replaced by (3.7) and \bfitB kt

is replaced by \bfitB kt
. In the subsequent

discussions, we employ the unified notations as presented in (3.5), but the readers can
readily differentiate between the two cases.

Notice that \bfity is uniquely determined by \bfitx =\bfitV k\bfity since \bfitV k has full-column rank.
Thus, F (k)(\bfity , \lambda ) and J (k)(\bfity , \lambda ) are well-defined. The next result shows how we can
obtain F (k)(\bfity , \lambda ) and J (k)(\bfity , \lambda ) from \bfitB k without any additional computations.
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1448 HAIBO LI

Lemma 3.2. For any \bfitx \in span\{ \bfitV k\} with the form \bfitx =\bfitV k\bfity , the projected gradient
of \scrL (\bfitx , \lambda ) has the expression

F (k)(\bfity , \lambda ) =

\Biggl( 
\lambda \bfitB \top 

k (\bfitB k\bfity  - \beta 1e1) + \bfity 
1

2
\| \bfitB k\bfity  - \beta 1e1\| 22  - 

\tau m

2

\Biggr) 
,(3.10)

and the projected Jacobian of F (\bfitx , \lambda ) has the expression

J (k)(\bfity , \lambda ) =

\biggl( 
\lambda \bfitB \top 

k \bfitB k + \bfitI \bfitB \top 
k (\bfitB k\bfity  - \beta 1e1)

(\bfitB k\bfity  - \beta 1e1)
\top \bfitB k 0

\biggr) 
.(3.11)

Now we can compute the projected Newton direction for updating the solution.
Starting from an initial solution (\bfitx 0, \lambda 0), consider the following two cases.

Case 1. Update (\bfitx k, \lambda k) from (\bfitx k - 1, \lambda k - 1) for k \leq kt. Suppose at the (k  - 1)th
iteration, we have \bfitx k - 1 =\bfitV k - 1\bfity k - 1, where \bfitx 0 := 0 and \bfity 0 := () is an empty vector.
Let \=\bfity k - 1 = (\bfity \top 

k - 1,0)
\top \in \BbbR k. If J (k)(\=\bfity k - 1, \lambda k - 1) is nonsingular, we compute the

Newton direction for the projected function F (k)(\bfity , \lambda ) at (\=\bfity k - 1, \lambda k - 1):
\biggl( 
\Delta \bfity k

\Delta \lambda k

\biggr) 
= - J (k)(\=\bfity k - 1, \lambda k - 1)

 - 1F (k)(\=\bfity k - 1, \lambda k - 1).(3.12a)

Then we update (\=\bfity k, \lambda k) by

\bfity k = \=\bfity k - 1 + \gamma k\Delta \bfity k, \lambda k = \lambda k - 1 + \gamma k\Delta \lambda k(3.12b)

with a suitably chosen step-length \gamma k > 0, and let \bfitx k =\bfitV k\bfity k.
Case 2. Update (\bfitx k, \lambda k) from (\bfitx k - 1, \lambda k - 1) for k > kt. At each iteration, we seek

a solution of the form \bfitx k =\bfitV kt\bfity k with \bfity k \in \BbbR kt . We compute the Newton direction
\biggl( 
\Delta \bfity k

\Delta \lambda k

\biggr) 
= - J (kt)(\bfity k - 1, \lambda k - 1)

 - 1F (kt)(\bfity k, \lambda k - 1),(3.12c)

and then compute

\bfity k = \bfity k - 1 + \gamma k\Delta \bfity k, \lambda k = \lambda k - 1 + \gamma k\Delta \lambda k(3.12d)

to get \bfitx k =\bfitV kt
\bfity k.

For both of the two cases, we call (\Delta \bfity k,\Delta \lambda k) the projected Newton direction,
since it is the Newton direction of a projected problem. The corresponding update
formula for \bfitx k is

\bfitx k =\bfitx k - 1 + \gamma k\Delta \bfitx k, \Delta \bfitx k :=\bfitV k\Delta \bfity k,

which is easy to be verified. For notational simplicity, in the subsequent part we
always use the unified notation

\=\bfity k - 1 =

\Biggl\{ 
(\bfity \top 

k - 1, 0)\top , k\leq kt,

\bfity k - 1, k > kt
(3.13)

for \=\bfity k - 1. Following the notations stated in Remark 2 and (3.13), we can use (3.12a)
and (3.12b) to describe the update procedure for both of the two cases.

It is vital to make sure that the projected Jacobian matrix J (k)(\=\bfity k - 1, \lambda k - 1) is
always nonsingular. This desired property is given in the following result. The proof
appears as a part of the proof of Lemma 4.6.
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PROJECTED NEWTON METHOD 1449

Proposition 3.3. If we choose \bfitx 0 = 0 and \=\bfity 0 = 0, then at each iteration
J (k)(\=\bfity k - 1, \lambda k - 1) is nonsingular as long as \lambda k - 1 \geq 0.

In order to investigate the convergence behavior of the method, define the follow-
ing merit function:

h(\bfitx , \lambda ) =
1

2

\Biggl[ 
\| \lambda \bfitA \top \bfitM  - 1(\bfitA \bfitx  - \bfitb ) +\bfitN  - 1\bfitx \| 2\bfitN +

\biggl( 
1

2
\| \bfitA \bfitx  - \bfitb \| 2\bfitM  - 1  - \tau m

2

\biggr) 2
\Biggr] 
.

(3.14)

Notice from Corollary 2.3 that (\bfitx \ast , \lambda \ast ) is the unique minimizer of h(\bfitx , \lambda ) and that
h(\bfitx \ast , \lambda \ast ) = 0. The following result shows that (\Delta \bfitx \top 

k ,\Delta \lambda k)
\top is indeed a descent

direction for h(\bfitx , \lambda ).

Theorem 3.4. Let \Delta \bfitx k =\bfitV k\Delta \bfity k. Then it holds that

\nabla h(\bfitx k - 1, \lambda k - 1)
\top 
\biggl( 
\Delta \bfitx k

\Delta \lambda k

\biggr) 
= - 2h(\bfitx k - 1, \lambda k - 1)\leq 0.(3.15)

Theorem 3.4 is a desired property for a gradient descent type algorithm. At
the (k  - 1)-th iteration, if h(\bfitx k - 1, \lambda k - 1) = 0, then we have (\bfitx k - 1, \lambda k - 1) = (\bfitx \ast , \lambda \ast ),
meaning we have obtained the unique solution to (2.2). Otherwise, (\Delta \bfitx \top 

k ,\Delta \lambda k)
\top is

a descent direction of h(\bfitx , \lambda ) at (\bfitx k - 1, \lambda k - 1), thereby we can continue updating the
solution by a backtracking line search strategy.

Step 3. Determine step-length by backtracking line search. For the case that
h(\bfitx k - 1, \lambda k - 1) \not = 0, we need to determine a step-length \gamma k such that h(\bfitx k, \lambda k) decreases
strictly. To this end, we use the backtracking line search procedure to ensure that the
Armijo condition [41, sect. 3.1] is satisfied:

h(\bfitx k, \lambda k)\leq h(\bfitx k - 1, \lambda k - 1) + c\gamma k(\Delta \bfitx \top 
k - 1,\Delta \lambda k)\nabla h(\bfitx k - 1, \lambda k - 1),(3.16)

where (\bfitx k, \lambda k) = (\bfitx k - 1, \lambda k - 1) + \gamma k(\Delta \bfitx k,\Delta \lambda k), and c \in (0,1) is a fixed constant. At
each iteration, we can quickly compute h(\bfitx k, \lambda k) based on the following result.

Lemma 3.5. Let

\=F (k)(\bfity , \lambda ) =

\left( 
 \lambda \=\bfitB 

\top 
k (

\=\bfitB k\bfity  - \beta 1e1) + y
1

2
\| \=\bfitB k\bfity  - \beta 1e1\| 22  - 

\tau m

2

\right) 
 , \=\bfitB k =

\left( 
    

\alpha 1

\beta 2 \alpha 2

. . .
. . .

\beta k+1 \alpha k+1

\right) 
    .

Then we have

h(\bfitx k - 1, \lambda k - 1) =
1

2
\| F (k)(\=\bfity k - 1, \lambda k - 1)\| 22, h(\bfitx k, \lambda k) =

1

2
\| \=F (k)(\=\bfity k, \lambda k)\| 22.(3.17)

We remark that in the above expression we have \=\bfitB k = \bfitB kt
for k \geq kt, and

specifically, we have \=\bfitB k =\bfitB \top 
kt

if \beta kt+1 = 0. The following theorem shows the existence
of a suitable step-length; see, e.g. [4, p. 121, Theorem 2.1] for details.

Theorem 3.6. For any continuously differentiable function f(\bfits ) : \BbbR l \rightarrow \BbbR , sup-
pose \nabla f is Lipschitz continuous with constant \zeta (\bfits ) at \bfits . If \bfitp is a descent direction
at \bfits , i.e., \nabla f(\bfits )\top \bfitp < 0, then for a fixed c \in (0,1) the Armijo condition f(\bfits + \gamma \bfitp ) \leq 
f(\bfits ) + c\gamma \nabla f(\bfits )\top \bfitp is satisfied for all \gamma \in [0, \gamma \mathrm{m}\mathrm{a}\mathrm{x}] with \gamma \mathrm{m}\mathrm{a}\mathrm{x} =

2(c - 1)\nabla f(\bfits )\top \bfitp 
\zeta (\bfits )\| \bfitp \| 2 .

With the aid of Lemma 3.5, a suitable step-length \gamma k can be determined using
the following backtracking line search strategy.
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1450 HAIBO LI

Routine 1. Armijo backtracking line search:
1. Given \gamma init > 0, let \gamma (0) = \gamma init and l= 0.
2. Until 1

2\| \=F (k)(\=\bfity k, \lambda k)\| 22 \leq 
\bigl( 
1
2  - c\gamma (l)

\bigr) 
\| F (k)(\=\bfity k - 1, \lambda k - 1)\| 22,

(i) set \gamma (l+1) = \eta \gamma (l), where \eta \in (0,1) is a fixed constant;
(ii) l\leftarrow l+ 1.

3. Set \gamma k = \gamma (l).

We set c= 10 - 4, \gamma \mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t} = 1.0, and \eta = 0.9 by default. Note that at each iteration we
need to ensure \lambda k > 0. Suppose at the (k  - 1)th iteration we already have \lambda k - 1 > 0.
Then at the kth iteration, if \Delta \lambda k < 0, we need only enforce \gamma \mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t} < - \lambda k - 1/\Delta \lambda k.

Overall, the whole procedure of PNT is presented in Algorithm 3.2. In the PNT
algorithm, at each kth iteration, computing the projected Newton direction requires
solving only the (k + 1)-order linear system (3.12a), which can be done very quickly
when k \ll n. Starting from the termination step kt, at each subsequent iteration,
a (kt + 1)-order linear system (3.12c) needs to be solved. We numerically find that
the algorithm almost always obtains a satisfied solution before gen-GKB terminates.
The PNT method is a natural generalization of the projected Newton method in [13].
Specifically, when \bfitM = \bfitI and \bfitN = \bfitI , it can be confirmed that both methods are
identical.

We remark that for very large-scale problems, it may take too many iterations
for PNT to converge. In this case, we can update the solution starting from the k0th
step of gen-GKB to save some computation for solving (3.12a). This means that we
first run k0 - 1 steps gen-GKB to construct a (k0 - 1)-dimensional subspace and then
start to update the solution from the k0th iteration. From the derivation of PNT, it
can be easily verified that if we set \=\bfity k0 - 1 = 0 \in \BbbR k0 , then (\Delta \bfitx \top 

k ,\Delta \lambda k)
\top is a descent

direction of h(\bfitx , \lambda ) at each iteration k \geq k0. We refer to this modified PNT method
as PNT-md.

Algorithm 3.2. Projected Newton method (PNT) for (2.2) and (2.3).

Input: \bfitA \in \BbbR m\times n, \bfitb \in \BbbR m, \bfitM \in \BbbR m\times m, \bfitN \in \BbbR n\times n, \tau \gtrsim 1
1: Initialization: \lambda 0 > 0, \=\bfity 0 = 0; c= 10 - 4, \eta = 0.9; tol > 0
2: Compute \beta 1, \alpha 1, \bfitu 1, \bfitv 1 by Algorithm 3.1
3: for k= 1,2, . . . do
4: Compute \beta k+1, \alpha k+1, \bfitu k+1, \bfitv k+1 by Algorithm 3.1; Form \bfitB k+1 and \bfitV k

5: (Terminate gen-GKB if \beta k+1 or \alpha k+1 is extremely small)
6: Compute F (k)(\=\bfity k - 1, \lambda k - 1) and J (k)(\=\bfity k - 1, \lambda k - 1) by (3.10) and (3.11)
7: Compute (\Delta \bfity k,\Delta \lambda k) by (3.12a)
8: if \Delta \lambda k > 0 then
9: \gamma \mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t} = 1
10: else
11: \gamma \mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t} =min\{ 1, - \eta \lambda k - 1/\Delta \lambda k\}  \triangleleft Ensure the positivity of \lambda k

12: end if
13: Determine the step-length \gamma k by Routine 1
14: Update (\bfity k, \lambda k) by (3.12b)
15: if 1

2\| \=F (k)(\=\bfity k, \lambda k)\| 2 \leq tol then
16: Compute \bfitx k =\bfitV k\bfity k; Stop iteration
17: end if
18: end for
Output: Final solution (\bfitx k, \lambda k)
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PROJECTED NEWTON METHOD 1451

From the derivations, we find that the success of PNT is attributed to the fact
that \bfitM and \bfitN can induce inner products. Therefore, the PNT method cannot be
directly used to handle the total variation (TV) or \ell 1 regularization terms. One pos-
sible approach for handling TV or \ell 1 norms is to approximate them with weighted \ell 2
norms at each iterated point [50, 51]. Furthermore, for the nonlinear inverse prob-
lem \bfitb = G(\bfitx ) + \bfitepsilon with differentiable G, at each iterated point we can approximate
\| G(\bfitx ) - \bfitb \| 2

\bfitM  - 1 by a quadratic convex function using the first-order Taylor expansion
of G. The above approaches follow a similar idea to the sequential quadratically con-
strained quadratic programming (SQCQP) method [16, 38]. This allows us to obtain
a sequence of optimization problems similar to (2.2), which can be solved efficiently by
PNT. Theoretical and computational aspects of this approach will be further studied
in the future.

3.2. Proofs. We gave the proofs of all the results in subsection 3.1. Remember
again that we always follow the notations as stated in Remark 2 and (3.13).

Proof of Lemma 3.2. By (3.8) and (3.9) we have

F (k)(\bfity , \lambda ) =

\Biggl( 
\lambda (\bfitA \bfitV k)

\top \bfitM  - 1(\bfitA \bfitV k\bfity  - \bfitb ) +\bfitV \top 
k \bfitN 

 - 1\bfitV k\bfity 
1

2
\| \bfitA \bfitV k\bfity  - \bfitb \| 2

\bfitM  - 1  - 
\tau m

2

\Biggr) 
,

and

J (k)(\bfity , \lambda ) =

\biggl( 
\lambda (\bfitA \bfitV k)

\top \bfitM  - 1(\bfitA \bfitV k) +\bfitV \top 
k \bfitN 

 - 1\bfitV k (\bfitA \bfitV k)
\top \bfitM  - 1(\bfitA \bfitV k\bfity  - \bfitb )

(\bfitA \bfitV k\bfity  - \bfitb )\top \bfitM  - 1(\bfitA \bfitV k) 0

\biggr) 
.

Using relations (3.5) and Proposition 3.1, we have \bfitA \bfitV k\bfity  - \bfitb = \bfitU k+1(\bfitB k  - \beta 1e1),
leading to

(\bfitA \bfitV k)
\top \bfitM  - 1(\bfitA \bfitV k\bfity  - \bfitb ) = (\bfitU k+1\bfitB k)

\top \bfitM  - 1\bfitU k+1(\bfitB k  - \beta 1e1) =\bfitB \top 
k (\bfitB k  - \beta 1e1),

and

\| \bfitA \bfitV k\bfity  - \bfitb \| 2\bfitM  - 1 = \| \bfitU k+1(\bfitB k  - \beta 1e1)\| 2\bfitM  - 1 = \| \bfitB k  - \beta 1e1\| 22.
If \beta kt+1 = 0, then for k \geq kt, the relation \bfitA \bfitV k\bfity  - \bfitb =\bfitU k+1(\bfitB k  - \beta 1e1) is replaced
by \bfitA \bfitV kt\bfity  - \bfitb = \bfitU kt(\bfitB kt

 - \beta 1e1). Therefore, the above identity is also applied to
the case k \geq kt. Now we have proved (3.10). The expression (3.11) can be proved
similarly.

In order to prove Lemma 3.5, we first give the following result.

Lemma 3.7. Let \widehat \bfitN = (\bfitN 1 ). Then we have the following identity:

\| F (\bfitx k - 1, \lambda k - 1)\| \widehat \bfitN = \| F (k)(\=\bfity k - 1, \lambda k - 1)\| 2.(3.18)

Proof. First, notice that

\| F (\bfitx k - 1, \lambda k - 1)\| 2\widehat \bfitN = \| \lambda k - 1\bfitA 
\top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb ) +\bfitN  - 1\bfitx \| 2\bfitN 

+

\biggl( 
1

2
\| \bfitA \bfitx k - 1  - \bfitb \| 2\bfitM  - 1  - \tau m

2

\biggr) 2

.

For the first term of the above summation, we have

\| \lambda k - 1\bfitA 
\top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb ) +\bfitN  - 1\bfitx k - 1\| 2\bfitN 

= (\lambda k - 1\bfitA 
\top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb ) +\bfitN  - 1\bfitx k - 1)

\top \bfitN (\lambda k - 1\bfitA 
\top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb )

+ \bfitN  - 1\bfitx k - 1),
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1452 HAIBO LI

and

\bfitN (\lambda k - 1\bfitA 
\top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb ) +\bfitN  - 1\bfitx k - 1)

= \lambda k - 1\bfitN \bfitA \top \bfitM  - 1\bfitU k+1(\bfitB k\=\bfity k - 1  - \beta 1e1) +\bfitV k\=\bfity k - 1

= \lambda k - 1(\bfitV k\bfitB 
\top 
k + \alpha k+1\bfitv k+1e

\top 
k+1)(\bfitB k\=\bfity k - 1  - \beta 1e1) +\bfitV k\=\bfity k - 1

=\bfitV k(\lambda k - 1\bfitB 
\top 
k (\bfitB k\=\bfity k - 1  - \beta 1e1) + \=\bfity k - 1),

where we have used

\alpha k+1\bfitv k+1e
\top 
k+1(\bfitB k\=\bfity k - 1  - \beta 1e1) = \alpha k+1\beta k+1\bfitv k+1e

\top 
k \=\bfity k - 1 = 0,

because e\top k \=\bfity k - 1 = 0 for k\leq kt and \alpha k+1\beta k+1 = 0 for k > kt. Similarly, we have

\lambda k - 1\bfitA 
\top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb ) +\bfitN  - 1\bfitx k - 1 =\bfitN  - 1\bfitV k(\lambda k - 1\bfitB 

\top 
k (\bfitB k\=\bfity k - 1  - \beta 1e1) + \=\bfity k - 1).

We also have

\| \lambda k - 1\bfitA 
\top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb ) +\bfitN  - 1\bfitx k - 1\| \bfitN = \| \lambda k - 1\bfitB 

\top 
k (\bfitB k\=\bfity k - 1  - \beta 1e1) + \=\bfity k - 1\| 2

and

1

2
\| \bfitA \bfitx k - 1  - \bfitb \| 2\bfitM  - 1  - \tau m

2
=

1

2
\| \bfitB k\=\bfity k - 1  - \beta 1e1\| 22  - 

\tau m

2
.

The desired result immediately follows by using (3.10).

Proof of Lemma 3.5. First, notice that h(\bfitx , \lambda ) = 1
2\| F (\bfitx , \lambda )\| 2\widehat N . Combining the

above relation with Lemma 3.7 we obtain the first identity of (3.17). Also, for k < kt
we have h(\bfitx k, \lambda k) =

1
2\| F (k+1)(\=\bfity k, \lambda k)\| 22 with

F (k+1)(\=\bfity k, \lambda k) =

\Biggl( 
\lambda \bfitB \top 

k+1(\bfitB k+1\=\bfity k  - \beta 1e1) + \=\bfity k
1

2
\| \bfitB k+1\=\bfity k  - \beta 1e1\| 22  - 

\tau m

2

\Biggr) 
.

Since the last element of \beta 1e1 and \=\bfity k is zero, it is easy to verify that

\bfitB k+1\=\bfity k  - \beta 1e1 =

\biggl( 
\=\bfitB k\=\bfity k  - \beta 1e1

0

\biggr) 
, \bfitB \top 

k+1(\bfitB k+1\=\bfity k  - \beta 1e1) = \=\bfitB 
\top 
k (

\=\bfitB k\=\bfity k  - \beta 1e1).

For k \geq kt, we have F (k)(\bfity , \lambda ) = F (k+1)(\bfity , \lambda ) = \=F (k)(\bfity , \lambda ). Therefore, we prove the
second identity of (3.17).

In order to prove Theorem 3.4, we need Lemma 3.7 and the following result.

Lemma 3.8. For any k\geq 1, we have the following identity:
\biggl( 
\bfitV \top 

k

1

\biggr) 
J(\bfitx k - 1, \lambda k - 1)\widehat \bfitN F (\bfitx k - 1, \lambda k - 1) = J (k)(\=\bfity k - 1, \lambda k - 1)F

(k)(\=\bfity k - 1, \lambda k - 1).

Proof. First, notice from (2.8) that
\biggl( 
\bfitV \top 

k

1

\biggr) 
J(\bfitx k - 1, \lambda k - 1)\widehat \bfitN 

=

\biggl( 
\lambda k - 1(\bfitA \bfitV k)

\top \bfitM  - 1\bfitA \bfitN +\bfitV \top 
k (\bfitA \bfitV k)

\top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb )

(\bfitA \bfitx k - 1  - \bfitb )\top \bfitM  - 1\bfitA \bfitN 0

\biggr) 
.
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PROJECTED NEWTON METHOD 1453

Using (3.5c) and similar derivations to the proof of Lemma 3.7, we get

(\bfitA \bfitx k - 1  - \bfitb )\top \bfitM  - 1\bfitA \bfitN = (\bfitB k\=\bfity k - 1  - \beta 1e1)
\top \bfitU \top 

k+1\bfitM 
 - 1\bfitA \bfitN 

= (\bfitB k\=\bfity k - 1  - \beta 1e1)
\top (\bfitB k\bfitV 

\top 
k + \alpha k+1ek+1\bfitv 

\top 
k+1)

= (\bfitB k\=\bfity k - 1  - \beta 1e1)
\top \bfitB k\bfitV 

\top 
k .(3.19)

Also, we can get

(\bfitA \bfitV k)
\top \bfitM  - 1\bfitA \bfitN = (\bfitU k+1\bfitB k)

\top \bfitM  - 1\bfitA \bfitN =\bfitB \top 
k (\bfitB k\bfitV 

\top 
k + \alpha k+1ek+1\bfitv 

\top 
k+1)

=\bfitB \top 
k \bfitB k\bfitV 

\top 
k + \alpha k+1\beta k+1ek\bfitv 

\top 
k+1,

and

(\bfitA \bfitV k)
\top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb ) = (\bfitB k\bfitU k+1)

\top \bfitM  - 1\bfitU k+1(\bfitB k\=\bfity k - 1  - \beta 1e1)

=\bfitB \top 
k (\bfitB k\=\bfity k - 1  - \beta 1e1).

Using (3.11), we get
\biggl( 
\bfitV \top 

k

1

\biggr) 
J(\bfitx k - 1, \lambda k - 1)\widehat \bfitN 

=

\Biggl( 
(\lambda k - 1\bfitB 

\top 
k \bfitB k + \bfitI )\bfitV \top 

k \bfitB \top 
k (\bfitB k\=\bfity k - 1  - \beta 1e1)\bigl( 

\bfitB k\=\bfity k - 1  - \beta 1e1
\bigr) \top 

\bfitB k\bfitV 
\top 
k 0

\Biggr) 
+

\biggl( 
\alpha k+1\beta k+1ek+1\bfitv 

\top 
k+1

0

\biggr) 

= J (k)(\=\bfity k - 1, \lambda k - 1)

\biggl( 
\bfitV \top 

k

1

\biggr) 
+

\biggl( 
\alpha k+1\beta k+1ek\bfitv 

\top 
k+1

0

\biggr) 
.

Using similar derivations to the proof of Lemma 3.7, we get

F (\bfitx k - 1, \lambda k - 1) =

\biggl( 
\bfitN  - 1

1

\biggr) \biggl( 
\lambda k - 1\bfitN \bfitA \top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb ) +\bfitx k - 1

1
2\| \bfitA \bfitx k - 1  - \bfitb \| 2

\bfitM  - 1  - \tau m
2

\biggr) 

=

\biggl( 
\bfitN  - 1

1

\biggr) \biggl( 
\bfitV k

1

\biggr) \biggl( 
\lambda k - 1\bfitB 

\top 
k (\bfitB k\=\bfity k - 1  - \beta 1e1) + \=\bfity k - 1

1
2\| \bfitB k\=\bfity k - 1  - \beta 1e1\| 22  - \tau m

2

\biggr) 

=

\biggl( 
\bfitN  - 1

1

\biggr) \biggl( 
\bfitV k

1

\biggr) 
F (k)(\=\bfity k - 1, \lambda k - 1).

Using the relations
\biggl( 
\bfitV \top 

k

1

\biggr) \biggl( 
\bfitN  - 1

1

\biggr) \biggl( 
\bfitV k

1

\biggr) 

= \bfitI ,

\biggl( 
\alpha k+1\beta k+1ek\bfitv 

\top 
k+1

0

\biggr) \biggl( 
\bfitN  - 1

1

\biggr) \biggl( 
\bfitV k

1

\biggr) 
= 0,

we finally obtain the desired result.

Proof of Theorem 3.4. Notice J(\bfitx , \lambda ) is the Jacobian of F (\bfitx , \lambda ). Using h(\bfitx , \lambda ) =
1
2\| F (\bfitx , \lambda )\| 2\widehat N we get \nabla h(\bfitx , \lambda ) = J(\bfitx , \lambda )\widehat \bfitN F (\bfitx , \lambda ), leading to

\nabla h(\bfitx k - 1, \lambda k - 1)
\top 
\biggl( 
\Delta \bfitx k

\Delta \lambda k

\biggr) 
=

\biggl( 
\Delta \bfity k

\Delta \lambda k

\biggr) \top \biggl( 
\bfitV \top 

k

1

\biggr) 
J(\bfitx k - 1, \lambda k - 1)\widehat \bfitN F (\bfitx k - 1, \lambda k - 1)

=

\biggl( 
\Delta \bfity k

\Delta \lambda k

\biggr) \top 
J (k)(\=\bfity k - 1, \lambda k - 1)F

(k)(\=\bfity k - 1, \lambda k - 1)

= - \| F (k)(\=\bfity k - 1, \lambda k - 1)\| 22 = - \| F (\bfitx k - 1, \lambda k - 1)\| 2\widehat \bfitN 
= - 2h(\bfitx k - 1, \lambda k - 1)\leq 0,

where we have used Lemmas 3.7 and 3.8.
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1454 HAIBO LI

4. Convergence analysis. The objective of this section is to prove the conver-
gence of PNT, which is stated in the following result and Corollary 4.8.

Theorem 4.1. Suppose the PNT algorithm is initialized with \=\bfity 0 = 0, \bfitx 0 = 0,
and \lambda 0 > 0. Then we either have

h(\bfitx k, \lambda k) = 0(4.1)

for some k <\infty , or have

lim
k\rightarrow \infty 

h(\bfitx k, \lambda k) = 0.(4.2)

Notice that (\bfitx \ast , \lambda \ast ) is the unique minimizer of h(\bfitx , \lambda ) and h(\bfitx \ast , \lambda \ast ) = 0. There-
fore, (4.1) implies that the algorithm finds the exact solution to (2.2) and (2.3) at
the kth iteration. In the following part, we prove (4.2) under the assumption that
h(\bfitx k, \lambda k)> 0 for any k \geq 1. We need a series of lemmas, which are Lemmas 4.2--4.7.
All of these lemmas follow the same assumption of Theorem 4.1.

Lemma 4.2. For any matrix \bfitC \in \BbbR m\times n with full column rank and \bfitd \in \BbbR m, if the
vector sequence \{ \bfitw k\} \in \BbbR n satisfies limk\rightarrow \infty \| \bfitC \top (\bfitC \bfitw k - \bfitd )\| 2 = 0, then limk\rightarrow \infty \bfitw k =
\bfitw \ast := argmin\bfitw \in \BbbR n \| \bfitC \bfitw  - \bfitd \| 2.

Proof. First, notice that \bfitw \ast is well-defined, since argmin\bfitw \in \BbbR n \| \bfitC \bfitw  - \bfitd \| 2 has a
unique solution for the full column rank matrix \bfitC . For any \bfitw k, let \bfitw k =\bfitw \ast + \=\bfitw k.
Then we have

lim
k\rightarrow \infty 

\| \bfitC \top (\bfitC \bfitw k  - \bfitd )\| 2 = lim
k\rightarrow \infty 

\| \bfitC \top (\bfitC \bfitw \ast  - \bfitd ) +\bfitC \top \bfitC \=\bfitw k\| 2 = lim
k\rightarrow \infty 

\| \bfitC \top \bfitC \=\bfitw k\| 2 = 0,

since \bfitC \top (\bfitC \bfitw \ast  - \bfitd ) = 0. Now we have \| \=\bfitw k\| 2\rightarrow 0 since \bfitC \top \bfitC is positive definite and
all norms of \BbbR n are equivalent. Therefore, we have \| \bfitw k - \bfitw \ast \| 2\rightarrow 0 or the equivalent
form limk\rightarrow \infty \bfitw k =\bfitw \ast .

Lemma 4.3. If the unique solution to min\bfity \in \BbbR kt \| \bfitB kty  - \beta 1e1\| 2 is \bfity \mathrm{m}\mathrm{i}\mathrm{n}, then
\bfitx \mathrm{m}\mathrm{i}\mathrm{n} :=\bfitV kt\bfity \mathrm{m}\mathrm{i}\mathrm{n} is the unique solution to

min
\bfitx \in \BbbR n

\| \bfitx \| \bfitN  - 1 s.t. \| \bfitA \bfitx  - \bfitb \| \bfitM  - 1 =min.(4.3)

Proof. It is easy to verify that both min\bfity \in \BbbR kt \| \bfitB kt
y  - \beta 1e1\| 2 and (4.3) have a

unique solution. A vector \bfitx is the unique solution to (4.3) if and only if

\bfitA \top \bfitM  - 1(\bfitA \bfitx  - \bfitb ) = 0, \bfitx \bot \bfitN  - 1 \scrN (\bfitA ),

where \bot \bfitN  - 1 means the orthogonality relation under the \bfitN  - 1-inner product. Now we
verify the above two conditions for \bfitx \mathrm{m}\mathrm{i}\mathrm{n}. For the first condition, using the relations
\bfitA \bfitx \mathrm{m}\mathrm{i}\mathrm{n} =\bfitA \bfitV kt

\bfity \mathrm{m}\mathrm{i}\mathrm{n} =\bfitU kt+1\bfitB kt
\bfity \mathrm{m}\mathrm{i}\mathrm{n} and (3.5c), we get

\bfitA \top \bfitM  - 1(\bfitA \bfitx \mathrm{m}\mathrm{i}\mathrm{n}  - \bfitb ) =\bfitA \top \bfitM  - 1\bfitU kt+1(\bfitB kt\bfity \mathrm{m}\mathrm{i}\mathrm{n}  - \beta 1e1)

=\bfitN  - 1(\bfitV kt
\bfitB \top 

kt
+ \alpha kt+1\bfitv kt+1e

\top 
kt+1) (\bfitB kt

\bfity \mathrm{m}\mathrm{i}\mathrm{n}  - \beta 1e1)

=\bfitN  - 1[\bfitV kt
\bfitB \top 

kt
(\bfitB kt

\bfity \mathrm{m}\mathrm{i}\mathrm{n}  - \beta 1e1) + \alpha kt+1\beta kt+1\bfitv kt+1e
\top 
kt
\bfity \mathrm{m}\mathrm{i}\mathrm{n}]

= 0,

since \bfitB \top 
kt
(\bfitB kt

\bfity \mathrm{m}\mathrm{i}\mathrm{n}  - \beta 1e1) = 0 and \alpha kt+1\beta kt+1 = 0. For the second condition, by
Proposition 3.1 we have

\bfitx \mathrm{m}\mathrm{i}\mathrm{n} \in span\{ \bfitV kt\} = span\{ (\bfitN \bfitA \top \bfitM  - 1\bfitA )i\bfitN \bfitA \top \bfitM  - 1\bfitb \} kt - 1
i=0

\subseteq \scrR (\bfitN \bfitA \top ) =\bfitN \scrN (\bfitA )\bot .
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PROJECTED NEWTON METHOD 1455

Write \bfitx \mathrm{m}\mathrm{i}\mathrm{n} =\bfitN \=\bfitx \mathrm{m}\mathrm{i}\mathrm{n} with \=\bfitx \mathrm{m}\mathrm{i}\mathrm{n} \in \scrN (\bfitA )\bot . For any \bfitw \in \scrN (\bfitA ), we have

\langle \bfitx \mathrm{m}\mathrm{i}\mathrm{n},\bfitw \rangle \bfitN  - 1 = \langle \bfitN \=\bfitx \mathrm{m}\mathrm{i}\mathrm{n},\bfitw \rangle \bfitN  - 1 = \langle \=\bfitx \mathrm{m}\mathrm{i}\mathrm{n},\bfitw \rangle 2 = 0.

Therefore, it holds that \bfitx \mathrm{m}\mathrm{i}\mathrm{n} \bot \bfitN  - 1 \scrN (\bfitA ).

Lemma 4.4. There exist a positive constant C1 such that for any k\geq 1,

\| \bfitA \top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb )\| \bfitN = \| \bfitB \top 
k (\bfitB k\=\bfity k - 1  - \beta 1e1)\| 2 \geq C1 > 0.(4.4)

Proof. First, we get from (3.19) the first identity:

\| \bfitA \top \bfitM  - 1(\bfitA \bfitx k - 1  - \bfitb )\| 2\bfitN 
= (\bfitA \bfitx k - 1  - \bfitb )\top \bfitM  - 1\bfitA \bfitN \bfitN  - 1

\bigl( 
(\bfitA \bfitx k - 1  - \bfitb )\top \bfitM  - 1\bfitA \bfitN 

\bigr) \top 

=
\bigl( 
\bfitB k\=\bfity k - 1  - \beta 1e1

\bigr) \top 
\bfitB k\bfitV 

\top 
k \bfitN 

 - 1\bfitV \top 
k \bfitB 

\top 
k

\bigl( 
\bfitB k\=\bfity k - 1  - \beta 1e1

\bigr) 

= \| \bfitB \top 
k

\bigl( 
\bfitB k\=\bfity k - 1  - \beta 1e1

\bigr) 
\| 22.

Then, we prove

\| \bfitA \bfitx k - 1  - \bfitb \| \bfitM  - 1 = \| \bfitB k\=\bfity k - 1  - \beta 1e1\| 2 \geq 
\surd 
\tau m(4.5)

by mathematical induction. For k = 1, we have \| \bfitA \bfitx 0  - \bfitb \| \bfitM  - 1 = \| \bfitb \| \bfitM  - 1 >
\surd 
\tau m

since \bfitx 0 = 0. Suppose \| \bfitA \bfitx k - 1  - \bfitb \| \bfitM  - 1 \geq \surd \tau m for k\geq 1. We have

\| \bfitA \bfitx k  - \bfitb \| 2\bfitM  - 1 = \| \bfitA \bfitV k(\=\bfity k - 1 + \gamma k\Delta \bfity k) - \bfitb \| 2\bfitM  - 1

= \| \bfitA \bfitx k - 1  - \bfitb \| 2\bfitM  - 1 + \gamma 2
k\| \bfitA \bfitV k\Delta \bfity k\| 2\bfitM  - 1 + 2\gamma k(\bfitA \bfitx k - 1  - b)\top \bfitM  - 1\bfitA \bfitV k\Delta \bfity k

= \| \bfitB k\=\bfity k - 1  - \beta 1e1\| 22 + \gamma 2
k\| \bfitA \bfitV k\Delta \bfity k\| 2\bfitM  - 1 + 2\gamma k(\bfitB k\=\bfity k - 1  - \beta 1e1)

\top \bfitB k\Delta \bfity ,

since

(\bfitA \bfitx k - 1  - b)\top \bfitM  - 1\bfitA \bfitV k = (\bfitB k\=\bfity k - 1  - \beta 1e1)
\top \bfitU \top 

k+1\bfitM 
 - 1\bfitU k+1\bfitB k

= (\bfitB k\=\bfity k - 1  - \beta 1e1)
\top \bfitB k.

Writing J (k)(\=\bfity k - 1, \lambda k - 1)(
\Delta \bfity k

\Delta \lambda k
) =  - F (k)(\=\bfity k - 1, \lambda k - 1) in the matrix form and using

\| \bfitB k\=\bfity k - 1  - \beta 1e1\| 2 \geq 
\surd 
\tau m, we get from the second equality of the above equation

that (\bfitB k\=\bfity k - 1  - \beta 1e1)
\top \bfitB k\Delta \bfity =  - 1

2 (\| \bfitB k\=\bfity k - 1  - \beta 1e1\| 22  - \tau m) \leq 0. Since \gamma k \leq 1, we
get

\| \bfitA \bfitx k  - \bfitb \| 2\bfitM  - 1

\geq \| \bfitB k\=\bfity k - 1  - \beta 1e1\| 22 + \gamma 2
k\| \bfitA \bfitV k\Delta \bfity k\| 2\bfitM  - 1  - 

\bigl( 
\| \bfitB k\=\bfity k - 1  - \beta 1e1\| 22  - \tau m

\bigr) 

= \tau m+ \gamma 2
k\| \bfitA \bfitV k\Delta \bfity k\| 2\bfitM  - 1 \geq \tau m.

Therefore, we prove (4.5).
To obtain the lower bound in (4.4), we investigate two cases: k < kt and k\geq kt.
Case 1. k < kt. For this case, we have

\| \bfitB \top 
k

\bigl( 
\bfitB k\=\bfity k - 1  - \beta 1e1

\bigr) 
\| 2 \geq \sigma \mathrm{m}\mathrm{i}\mathrm{n}(\bfitB k)\| \bfitB k\=\bfity k - 1  - \beta 1e1\| 2 \geq \sigma \mathrm{m}\mathrm{i}\mathrm{n}(\bfitB kt

)
\surd 
\tau m> 0,

where \sigma \mathrm{m}\mathrm{i}\mathrm{n}(\cdot ) is the smallest singular value of a matrix, and \bfitB kt
is the first kt \times kt

part of \bfitB kt .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

3/
25

 to
 1

28
.2

50
.0

.3
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1456 HAIBO LI

Case 2. k\geq kt. For this case, we can write \bfitx k - 1 as \bfitx k - 1 =\bfitV kt
\=\bfity k - 1. Remember

that \=\bfity k - 1 = \bfity k - 1 if k > kt. We first prove \| \bfitB \top 
kt
(\bfitB kt

\=\bfity k - 1  - \beta 1e1)\| 2 \not = 0. If it is
not true, then \=\bfity k - 1 = argmin\bfity \| \bfitB kt

\bfity  - \beta 1e1\| 2. By Lemma 4.3, \bfitx k - 1 is the solu-
tion to (4.3). Thus, it must hold that \| \bfitA \bfitx k - 1  - \bfitb \| \bfitM  - 1 <

\surd 
\tau m by Assumption 1,

which contradicts (4.5). Now suppose the lower bound in (4.4) is not true. Then
there exists a subsequence \{ \=\bfity kj - 1\} with kj \geq kt such that limj\rightarrow \infty \| \bfitB \top 

kt
(\bfitB kt

\=\bfity kj - 1  - 
\beta 1e1)\| 2 = 0. By Lemma 4.2, we have limj\rightarrow \infty \=\bfity kj - 1 = \bfity \mathrm{m}\mathrm{i}\mathrm{n} := argmin\bfity \| \bfitB kt

\bfity  - \beta 1e1\| 2,
leading to limj\rightarrow \infty \bfitx kj - 1 = limkj\rightarrow \infty \bfitV kt

\=\bfity kj - 1 = \bfitV kt\bfity \mathrm{m}\mathrm{i}\mathrm{n}. It follows from Lemma
4.3 that \bfitV kt\bfity \mathrm{m}\mathrm{i}\mathrm{n} = \bfitx \mathrm{m}\mathrm{i}\mathrm{n}, which is the solution to (4.3). Therefore, it must hold
thatlimj\rightarrow \infty \| \bfitA \bfitx kj - 1  - \bfitb \| \bfitM  - 1 = \| \bfitA \bfitx \mathrm{m}\mathrm{i}\mathrm{n}  - \bfitb \| \bfitM  - 1 <

\surd 
\tau m by Assumption 1, which

contradicts (4.5). Summarizing both of the two cases, the desired result is proved.

Lemma 4.5. The points \{ (\bfitx k, \lambda k)\} \infty i=0 generated by the PNT algorithm lie in a
bounded set of \BbbR n \times \BbbR +.

Proof. First, notice that h(\bfitx 0, \lambda 0) \geq h(\bfitx 1, \lambda 1) \geq \cdot \cdot \cdot . We need only prove
\{ (\bfitx k, \lambda k)\} k\geq kt

is bounded above. In this case, notice that \bfitx k =\bfitV kt
\bfity k and

h(\bfitx k, \lambda k) =
1

2

\Biggl[ 
\| \lambda k\bfitA 

\top \bfitM  - 1(\bfitA \bfitx k  - \bfitb ) +\bfitN  - 1\bfitx k\| 2\bfitN +

\biggl( 
1

2
\| \bfitB kt\bfity k - \beta 1e1\| 22 - 

\tau m

2

\biggr) 2
\Biggr] 
.

If the points do not lie in a bounded set, there exists a subsequence \{ (\bfitx kj
, \lambda kj

)\} 
with kj \geq kt such that (\bfitx kj

, \lambda kj
) \rightarrow \infty . If \| \bfitx kj

\| 2 \rightarrow \infty , then \| \bfity kj
\| 2 \rightarrow \infty , since

\bfitx kj
=\bfitV kt

\bfity kj
and \bfitV kt

has full column rank. This leads to \| \bfitB kt
\bfity kj
\| 2\rightarrow \infty since \bfitB kt

has full column rank. It follows that the second term of h(\bfitx kj , \lambda kj ) tends to infinity
and h(\bfitx kj , \lambda kj )\rightarrow \infty , a contradiction. Therefore, it must hold that \| \bfitx kj\| 2 is bounded

above and \lambda kj
\rightarrow \infty . By Lemma 4.4, we have \| \lambda kj

\bfitA \top \bfitM  - 1(\bfitA \bfitx kj
 - \bfitb )\| \bfitN \geq \lambda kj

C1.

Notice that \{ \bfitN  - 1\bfitx kj
\} lie in a bounded set. It follows that \| \lambda kj

\bfitA \top \bfitM  - 1(\bfitA \bfitx kj
 - \bfitb )+

\bfitN  - 1\bfitx kj
\| \bfitN \rightarrow \infty and h(\bfitx kj

, \lambda kj
)\rightarrow \infty , also a contradiction.

Lemma 4.6. There exist a positive constant C2 <+\infty such that for any k\geq 1,

\| J (k)(\=\bfity k - 1, \lambda k - 1)
 - 1\| 2 \leq C2.(4.6)

Proof. First, we prove that J (k)(\=\bfity k - 1, \lambda k - 1) is always nonsingular. Write it as

J (k)(\=\bfity k - 1, \lambda k - 1) =

\biggl( 
\lambda k - 1\bfitB 

\top 
kt
\bfitB k + \bfitI \bfitB \top 

k (\bfitB kt
\=\bfity k - 1  - \beta 1e1)

(\bfitB k\=\bfity k - 1  - \beta 1e1)
\top \bfitB k 0

\biggr) 
=:

\biggl( 
\bfitC k \bfitd k

\bfitd \top 
k 0

\biggr) 

and notice that
\biggl( 
\bfitC k \bfitd k

\bfitd \top 
k 0

\biggr) 
=

\biggl( 
\bfitI 0

 - \bfitd \top 
k \bfitC 

 - 1
k 1

\biggr)  - 1\biggl( 
\bfitC k 0

0  - \bfitd \top 
k \bfitC 

 - 1
k \bfitd k

\biggr) \biggl( 
\bfitI  - \bfitC  - 1

k \bfitd k

0 1

\biggr)  - 1

.

It follows that
\biggl( 
\bfitC k \bfitd k

\bfitd \top 
k 0

\biggr)  - 1

=

\biggl( 
\bfitI  - \bfitC  - 1

k \bfitd k

0 1

\biggr) \biggl( 
\bfitC  - 1

k 0

0  - (\bfitd \top 
k \bfitC 

 - 1
k \bfitd k)

 - 1

\biggr) \biggl( 
\bfitI 0

 - \bfitd \top 
k \bfitC 

 - 1
k 1

\biggr) 
,(4.7)

Since \bfitC k is positive definite and \| \bfitd k\| 2 \geq C1 > 0.
To give an upper bound on \| J (k)(\=\bfity k - 1, \lambda k - 1)

 - 1\| 2, we need only consider k\geq kt,

where \bfitB k =\bfitB kt
in J (k)(\=\bfity k - 1, \lambda k - 1). Since \sigma \mathrm{m}\mathrm{i}\mathrm{n}(\bfitC k) = \sigma \mathrm{m}\mathrm{i}\mathrm{n}(\lambda k - 1\bfitB 

\top 
kt
\bfitB kt

+ \bfitI ) \geq 1,
we have \| \bfitC  - 1

k \| 2 \leq 1. By Lemma 4.5, there exist a positive constant C3 < +\infty such
that \lambda k \leq C3, thereby

\sigma \mathrm{m}\mathrm{a}\mathrm{x}(\bfitC k)\leq \sigma \mathrm{m}\mathrm{a}\mathrm{x}(\lambda k - 1\bfitB 
\top 
kt
\bfitB kt

) + \sigma \mathrm{m}\mathrm{a}\mathrm{x}(\bfitI )\leq C3\sigma \mathrm{m}\mathrm{a}\mathrm{x}(\bfitB 
\top 
kt
\bfitB kt

) + 1=: \=C3.
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PROJECTED NEWTON METHOD 1457

By Lemma 4.4 we have \| \bfitd k\| 2 = \| \bfitB \top 
kt
(\bfitB kt

\=\bfity k - 1 - \beta 1e1)\| 2 \geq C1. On the other hand, by
Lemma 4.5 we know that \| \bfitx k - 1\| 2 = \| \bfitV kt

\=\bfity k - 1\| 2 is bounded above, thereby \| \=\bfity k - 1\| 2
is bounded above since \bfitV kt

has full column rank. Thus, there exists a positive
constant \=C1 such that \| \bfitd k\| 2 \leq \=C1, leading to

\| \bfitC  - 1
k \bfitd k\| 2 \leq \| \bfitC  - 1

k \| 2\| \bfitd k\| 2 \leq \=C1\sigma \mathrm{m}\mathrm{i}\mathrm{n}(\bfitC k)
 - 1 \leq \=C1,

and

\bfitd \top 
k \bfitC 

 - 1
k \bfitd k \geq \sigma \mathrm{m}\mathrm{i}\mathrm{n}(\bfitC 

 - 1
k )\| \bfitd k\| 22 = \sigma \mathrm{m}\mathrm{a}\mathrm{x}(\bfitC k)

 - 1\| \bfitd k\| 22 \geq C2
1/

\=C3 > 0.

Therefore, we have

\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
0  - \bfitC  - 1

k \bfitd k

0 0

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
2

2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\biggl( 
0  - \bfitC  - 1

k \bfitd k

0 0

\biggr) \top \biggl( 
0  - \bfitC  - 1

k \bfitd k

0 0

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

=

\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
0

\| \bfitC  - 1
k \bfitd k\| 22

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq \=C2
1

and
\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
\bfitI  - \bfitC  - 1

k \bfitd k

0 1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
\bfitI 

1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
2

+

\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
0  - \bfitC  - 1

k \bfitd k

0 0

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 1 + \=C1.

Similarly, we have
\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
\bfitC  - 1

k 0

0  - (\bfitd \top 
k \bfitC 

 - 1
k \bfitd k)

 - 1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq max\{ 1, \=C3/C
2
1\} .

Using the expression of J (k)(\=\bfity k - 1, \lambda k - 1) in (4.7), we finally obtain the desired
result.

Lemma 4.7. There exists a positive constant C4 such that for any k\geq 1,

\gamma k \geq C4 > 0.(4.8)

Proof. By Theorems 3.6 and 3.4, at each iteration the Armijo backtracking line
search must terminate in finite steps with a \gamma k satisfying

\gamma k \geq min

\biggl\{ 
1,

4(1 - c)\eta h(\bfitx k - 1, \lambda k - 1)

\zeta (\bfitx k - 1, \lambda k - 1)\| (\Delta \bfitx \top 
k ,\Delta \lambda k)\| 22

\biggr\} 
,

where \zeta (\bfitx k - 1, \lambda k - 1) is the Lipschitz constant of \nabla h at (\bfitx k - 1, \lambda k - 1); see also [4,
p. 122, Corollary 2.1]. Now we prove \zeta (\bfitx k - 1, \lambda k - 1) are bounded above. Notice that
\nabla h(\bfitx , \lambda ) = J(\bfitx , \lambda ) \widehat NF (\bfitx , \lambda ). Thus, all the elements in the Jacobian of \nabla h(\bfitx , \lambda ) are
polynomials of (\bfitx , \lambda ) with degrees not bigger than 4. Since \{ (\bfitx k - 1, \lambda k - 1)\} lie in a
bounded set, the norms of the Jacobians of \nabla h(\bfitx , \lambda ) at the points \{ (\bfitx k - 1, \lambda k - 1)\} are
bounded above. Therefore, the Lipschitz constants \zeta (\bfitx k - 1, \lambda k - 1) are bounded above.

Let \zeta (\bfitx k - 1, \lambda k - 1) \leq \zeta 0 with 0 < \zeta 0 < +\infty for any k \geq 1. Then by Lemmas 4.6
and 3.7, we have

\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
\Delta \bfitx k

\Delta \lambda k

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq 
\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
\bfitV k

1

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
2

\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 
\Delta \bfity k

\Delta \lambda k

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
2

\leq (\| \bfitV kt
\| 2 + 1)\| J (k)(\=\bfity k - 1, \lambda k - 1)

 - 1\| 2\| F (k)(\=\bfity k - 1, \lambda k - 1)\| 2
\leq C2(\| \bfitV kt

\| 2 + 1)(2h(\bfitx k - 1, \lambda k - 1))
1/2.
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1458 HAIBO LI

Then we obtain

\gamma k \geq min

\biggl\{ 
1,

4(1 - c)\eta h(\bfitx k - 1, \lambda k - 1)

\zeta 0\| (\Delta \bfitx \top 
k ,\Delta \lambda k)\top \| 22

\biggr\} 
\geq min

\biggl\{ 
1,

2(1 - c)\eta 

\zeta 0C2
2 (\| \bfitV kt

\| 2 + 1)2

\biggr\} 
=:C4.

The desired result is obtained.

Proof of Theorem 4.1. By Lemma 4.5, the sequence \{ (\bfitx k, \lambda k)\} \infty k=1 is contained in
a bounded set, thereby there exists a convergent subsequence \{ (\bfitx kj

, \lambda kj
)\} \infty j=1. Sup-

pose (\bfitx kj
, \lambda kj

)\rightarrow (\widehat \bfitx ,\widehat \lambda ). It follows that h(\bfitx kj
, \lambda kj

)\rightarrow h(\widehat \bfitx ,\widehat \lambda ) since h(\bfitx , \lambda ) is continu-
ous. Note that h(\bfitx kj , \lambda kj ) is nonincreasing, thereby h(\widehat \bfitx ,\widehat \lambda )\leq h(\bfitx kj , \lambda kj ) for any kj .

Thus, for any \varepsilon > 0, there exist a k \star \in \BbbN such that h(\bfitx kj
, \lambda kj

)< h(\widehat \bfitx ,\widehat \lambda ) + \varepsilon , kj > k \star .
Select one kj that satisfies kj >k \star . For any k\geq kj , we have h(\bfitx k, \lambda k)\leq h(\bfitx kj

, \lambda kj
)<

h(\widehat \bfitx ,\widehat \lambda )+ \varepsilon , which means that limk\rightarrow \infty h(\bfitx k, \lambda k) = h(\widehat \bfitx ,\widehat \lambda ). The Armijo condition and
Theorem 3.4 lead to h(\bfitx k+1, \lambda k+1)  - h(\bfitx k, \lambda k) \leq c\gamma k

\bigl( 
\Delta \bfitx \top 

k ,\Delta \lambda k

\bigr) 
\nabla h(\bfitx k, \lambda k) \leq 0.

Taking the limit on both sides leads to limk\rightarrow \infty c\gamma k
\bigl( 
\Delta \bfitx \top 

k ,\Delta \lambda k

\bigr) 
\nabla h(\bfitx k, \lambda k) = 0. By

Lemma 4.7 we get limk\rightarrow \infty 
\bigl( 
\Delta \bfitx \top 

k ,\Delta \lambda k

\bigr) 
\nabla h(\bfitx k, \lambda k) = 0. Noticing by Theorem 3.4

that  - 2h(\bfitx k, \lambda k) =
\bigl( 
\Delta \bfitx \top 

k ,\Delta \lambda k

\bigr) 
\nabla h(\bfitx k, \lambda k), we get h(\widehat \bfitx ,\widehat \lambda ) = limk\rightarrow \infty h(\bfitx k, \lambda k) = 0.

This proves the desired result.

Now we can give the convergence result of (\bfitx k, \lambda k).

Corollary 4.8. The sequence \{ (\bfitx k, \lambda k)\} \infty k=0 generated by the PNT algorithm
eventually converges to (\bfitx \ast , \lambda \ast ), i.e., the solution of (2.2) and the corresponding La-
grange multiplier.

Proof. Using the same notations as the proof of Theorem 4.1, we obtain that
(\widehat \bfitx ,\widehat \lambda ) = (\bfitx \ast , \lambda \ast ), since h(\bfitx , \lambda ) has the unique zero point (\bfitx \ast , \lambda \ast ). Therefore, the
subsequence \{ (\bfitx kj

, \lambda kj
)\} \infty j=1 defined in the proof of Theorem 4.1 converges to (\bfitx \ast , \lambda \ast ).

Now we need to prove the whole sequence \{ (\bfitx k, \lambda k)\} \infty k=1 converges to (\bfitx 
\ast , \lambda \ast ). Assume

that there is a subsequence \{ (\bfitx lj , \lambda lj )\} \infty j=1 that does not converge to (\bfitx \ast , \lambda \ast ). We can
select a subsequence from \{ (\bfitx lj , \lambda lj )\} \infty j=1 that converges to a point (\=\bfitx , \=\lambda ) \not = (\bfitx \ast , \lambda \ast ).
Since h(\bfitx lj , \lambda lj ) is nonincreasing with respect to j, using the same procedure as the
proof of Theorem 4.1, we can obtain again that h(\=\bfitx , \=\lambda ) = 0, leading to (\=\bfitx , \=\lambda ) = (\bfitx \ast , \lambda \ast ),
a contradiction. Therefore, any subsequence of \{ (\bfitx k, \lambda k)\} \infty k=0 converges to (\bfitx \ast , \lambda \ast ),
thereby \{ (\bfitx k, \lambda k)\} \infty k=0 converges to (\bfitx \ast , \lambda \ast ).

5. Experimental results. We test the PNT method and compare it with the
standard Newton method, which refers to the method in [31] but (2.9) is solved using
direct matrix inversions. These two methods use the same initialization and back-
tracking line search strategy. The setting of hyperparameters follows Algorithm 3.2,
and we set \tau = 1.001 and \lambda 0 = 0.1 in all the experiments. We also implement the
generalized hybrid iterative method proposed in [12] (denoted by genHyb), which
is also based on gen-GKB. The genHyb iteratively computes approximations to \mu opt

and \bfitx opt = \bfitx (\mu opt), where \mu opt is the optimal Tikhonov regularization parameter,
that is \mu opt =min\mu >0 \| \bfitx (\mu ) - \bfitx \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 2; the kth approximate Lagrangian multiplier is
\lambda k = 1/\mu k. All the experiments are performed on MATLAB R2023b. The codes are
available at https://github.com/Machealb/InverProb IterSolver.

All the inverse problems in the experiments are ill-posed and satisfy Assumption
1. We use three types of ill-posed inverse problems to test the proposed method. The
characteristics of these problems are summarized in Table 1.

5.1. Small-scale problems. We choose two small-scale one-dimensional (1D)
inverse problems from [24]. The first problem is heat, an inverse heat equation

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Table 1
Properties of the inverse problems in the experiments.

Problem m\times n Ill-posedness Description

heat 2000\times 2000 moderate inverse heat equation
shaw 3000\times 3000 severe 1D image restoration

PRblurshake 1282 \times 1282 mild 2D image deblurring

PRblurspeckle 1282 \times 1282 mild 2D image deblurring
PRspherical 23168\times 1282 mild computed tomography

22 HAIBO LI
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Fig. 1. True solution and noisy observed data. The first two: heat. The last two: shaw.

(2.1) and the corresponding regularized solution, which is denoted by \mu DP and \bfitx DP ,
respectively. Therefore, the solution to (2.2) and (2.3) is (\bfitx \ast , \lambda \ast ) = (\bfitx DP , 1/\mu DP ).
We use the optimal Tikhonov solution and the DP solution as the baseline for the
subsequent tests.

For these two small-scale problems, we also implement the projected Newton
method in [13] based on the transformation (1.3) as a comparison. This means that
we solve

min
\=\bfitx \in \BbbR n
\{ \| (\bfitL M\bfitA \bfitL N )\=\bfitx  - \bfitL M\bfitb \| 22 + \mu \| \=\bfitx \| 22\} ,

using the method in [13] and then compute the regularized solution \bfitx k = \bfitL  - 1
N \=\bfitx k.

This Cholesky factorization based method is abbreviated as Ch-PNT.
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Fig. 2. Relative errors of iterative solutions, convergence of \lambda k, and convergence of merit
functions. Top: heat. Bottom: shaw.

We compare the convergence behaviors of PNT, Ch-PNT, Newton and genHyb
methods by plotting the relative error curve of \bfitx k with respect to \bfitx true and the conver-
gence curves of \lambda k and merit functions. The solutions (\bfitx DP , 1/\mu DP ) and (\bfitx opt, 1/\mu opt)
are used as baselines. From Figure 2 we find that both PNT and Newton methods
converge very fast to \bfitx DP and \lambda DP := 1/\mu DP with very few iterations, and PNT
converges only slightly slower than Newton. We also find that the convergence be-
haviors of PNT and Ch-PNT are almost identical. This is not surprising, as both
methods utilize the same subspaces for projecting the large-scale system and employ
the same hyperparameters and update procedures. For heat, the error of the DP

Fig. 1. True solution and noisy observed data. The first two: heat. The last two: shaw.

described by the Volterra integral equation of the first kind on [0,1]. The second
problem is shaw, a 1D image restoration model described by the Fredholm integral
equation of the first kind on [ - \pi /2, \pi /2]. We use the code in [24] to discretize the
two problems to generate \bfitA , \bfitx \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} and \bfitb \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} = \bfitA \bfitx \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}, where m = n = 2000 and
m = n = 3000 for heat and shaw, respectively. We set the noisy observation vector
\bfitb as \bfitb = \bfitb \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} + \bfitepsilon , where \bfitepsilon is a Gaussian noise. For heat, we set \bfitepsilon as a white noise
(i.e., \bfitM is a scalar matrix) with noise level \varepsilon := \| \bfitepsilon \| 2/\| \bfitb \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}\| 2 = 5\times 10 - 2; for shaw,
we set \bfitepsilon as a uncorrelated nonwhite noise (i.e., \bfitM is a diagonal matrix) with noise
level \varepsilon = 10 - 2. The true solutions and noisy observed data for these two problems are
shown in Figure 1.

For heat, we assume a Gaussian prior \bfitx \sim \scrN (0, \mu  - 1\bfitN ) with \bfitN coming from
the Gaussian kernel \kappa G, i.e., the ij element of \bfitN is [\bfitN ]ij = KG(rij), KG(r) :=
exp

\bigl( 
 - r2/(2l2)

\bigr) 
, where rij = \| \bfitp i  - \bfitp j\| 2 and \{ \bfitp i\} ni=1 are discretized points of the

domain of the true solution; the parameter l is set as l= 0.1. For shaw, we construct
\bfitN using the exponential kernel Kexp(r) := exp ( - (r/l)\nu ) , where the parameters l and
\nu are set as l = 0.1 and \nu = 1. We set \tau = 1.001 for both the two problems. We
factorize \bfitM  - 1 and \bfitN  - 1 to form (1.3) and solve it directly to find \mu opt and \bfitx opt;
the corresponding Lagrangian multiplier is \lambda opt = 1/\mu opt. We also compute the \mu of
(2.1) and the corresponding regularized solution, which is denoted by \mu DP and \bfitx DP ,
respectively. Therefore, the solution to (2.2) and (2.3) is (\bfitx \ast , \lambda \ast ) = (\bfitx DP ,1/\mu DP ).
We use the optimal Tikhonov solution and the DP solution as the baseline for the
subsequent tests.

For these two small-scale problems, we also implement the projected Newton
method in [13] based on the transformation (1.3) as a comparison. This means that
we solve

min
\=\bfitx \in \BbbR n
\{ \| (\bfitL M\bfitA \bfitL N )\=\bfitx  - \bfitL M\bfitb \| 22 + \mu \| \=\bfitx \| 22\} ,

using the method in [13] and then compute the regularized solution \bfitx k = \bfitL  - 1
N \=\bfitx k.

This Cholesky factorization based method is abbreviated as Ch-PNT.
We compare the convergence behaviors of PNT, Ch-PNT, Newton, and genHyb

methods by plotting the relative error curve of \bfitx k with respect to \bfitx \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e} and the conver-
gence curves of \lambda k and merit functions. The solutions (\bfitx DP ,1/\mu DP ) and (\bfitx opt,1/\mu opt)
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Fig. 1. True solution and noisy observed data. The first two: heat. The last two: shaw.

(2.1) and the corresponding regularized solution, which is denoted by \mu DP and \bfitx DP ,
respectively. Therefore, the solution to (2.2) and (2.3) is (\bfitx \ast , \lambda \ast ) = (\bfitx DP , 1/\mu DP ).
We use the optimal Tikhonov solution and the DP solution as the baseline for the
subsequent tests.

For these two small-scale problems, we also implement the projected Newton
method in [13] based on the transformation (1.3) as a comparison. This means that
we solve

min
\=\bfitx \in \BbbR n
\{ \| (\bfitL M\bfitA \bfitL N )\=\bfitx  - \bfitL M\bfitb \| 22 + \mu \| \=\bfitx \| 22\} ,

using the method in [13] and then compute the regularized solution \bfitx k = \bfitL  - 1
N \=\bfitx k.

This Cholesky factorization based method is abbreviated as Ch-PNT.

0 5 10 15 20 25 30 35 40

Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8
PNT

Ch-PNT

Newton

genHyb

Tikh-DP

Tikh-opt

0 5 10 15 20 25 30 35 40

Iteration

10 -8

10 -6

10 -4

10 -2

100

PNT

Ch-PNT

Newton

genHyb

Tikh-DP

Tikh-opt

0 5 10 15 20 25 30 35 40

Iteration

10
-30

10
-20

10
-10

10
0

10
10

F
u

n
c
ti
o

n
 v

a
lu

e
 

0 5 10 15 20 25 30 35 40

Iteration

10 -1

100

PNT

Ch-PNT

Newton

genHyb

Tikh-DP

Tikh-opt

0 5 10 15 20 25 30 35 40

Iteration

10 -8

10 -6

10 -4

10 -2

100

PNT

Ch-PNT

Newton

genHyb

Tikh-DP

Tikh-opt

0 5 10 15 20 25 30 35 40

Iteration

10
-30

10
-20

10
-10

10
0

10
10

10
20

F
u

n
c
ti
o

n
 v

a
lu

e
 

Fig. 2. Relative errors of iterative solutions, convergence of \lambda k, and convergence of merit
functions. Top: heat. Bottom: shaw.

We compare the convergence behaviors of PNT, Ch-PNT, Newton and genHyb
methods by plotting the relative error curve of \bfitx k with respect to \bfitx true and the conver-
gence curves of \lambda k and merit functions. The solutions (\bfitx DP , 1/\mu DP ) and (\bfitx opt, 1/\mu opt)
are used as baselines. From Figure 2 we find that both PNT and Newton methods
converge very fast to \bfitx DP and \lambda DP := 1/\mu DP with very few iterations, and PNT
converges only slightly slower than Newton. We also find that the convergence be-
haviors of PNT and Ch-PNT are almost identical. This is not surprising, as both
methods utilize the same subspaces for projecting the large-scale system and employ
the same hyperparameters and update procedures. For heat, the error of the DP

Fig. 2. Relative errors of iterative solutions, convergence of \lambda k, and convergence of merit func-
tions. Top: heat. Bottom: shaw.

are used as baselines. From Figure 2 we find that both PNT and Newton methods
converge very fast to \bfitx DP and \lambda DP := 1/\mu DP with very few iterations, and PNT con-
verges only slightly slower than Newton. We also find that the convergence behaviors
of PNT and Ch-PNT are almost identical. This is not surprising, as both methods
utilize the same subspaces for projecting the large-scale system and employ the same
hyperparameters and update procedures. For heat, the error of the DP solution is
slightly higher than the optimal Tikhonov solution, because DP slightly underesti-
mates \lambda . The merit functions of both PNT and Newton decrease monotonically, and
h(\bfitx k, \lambda k) of PNT eventually decreases to an extremely small value for the two prob-
lems. We remark that we set w= 1 for hw(\bfitx , \lambda ) in all the tests. For Newton method
for heat, we stop the iterate at k = 34 because the step-length \gamma k is too small. In
comparison, genHyb converges much slower than the previous two methods, especially
for heat.

Figure 3 plots the recovered solutions computed by PNT and genHyb methods at
the final iterations; the solution by Newton is almost the same as that by PNT, thereby
we omit it. We also plot the optimal Tikhonov regularized solution as a comparison,
where the DP solution is very similar and omitted. Both PNT and genHyb can recover
good regularized solutions, and PNT is slightly better for heat.

To further demonstrate the performance of PNT, we present the variation of
the condition number of J (k)(\=\bfity k - 1, \lambda k - 1) during the iteration of PNT in Figure 4.
This condition number is denoted by \kappa (J (k)) in the two pictures. We observe that
the condition number does not increase significantly during the iteration. This ensures
that the small-scale linear system (3.12a) can be solved directly via matrix inversions
without any issues.

To show the advantage of the computational efficiency of PNT over Ch-PNT and
Newton, we gradually increase the scale of the test problems and measure the running
time of the three methods, where all of them stop at the first iteration such that\bigm| \bigm| \| \bfitA \bfitx k  - \bfitb \| 2

\bfitM  - 1  - \tau m
\bigm| \bigm| \leq 10 - 8. The time data are listed in Table 2. We also compute

the ratio of the running time, i.e., the value of Ch-PNT-time/PNT-time and Newton-
time/PNT-time. For shaw, we find that all three methods stop with similar iteration

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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solution is slightly higher than the optimal Tikhonov solution, because DP slightly
under-estimates \lambda . The merit functions of both PNT and Newton decrease monoton-
ically, and h(\bfitx k, \lambda k) of PNT eventually decreases to an extremely small value for the
two problems. We remark that we set w = 1 for hw(\bfitx , \lambda ) in all the tests. For Newton
method for heat, we stop the iterate at k = 34 because the step-length \gamma k is too
small. In comparison, genHyb converges much slower than the previous two methods,
especially for heat.
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Fig. 3. Comparison of reconstructed solutions at the final iterations with the optimal Tikhonov
regularized solution. Top: heat. Bottom: shaw.

Figure 3 plots the recovered solutions computed by PNT and genHyb methods at
the final iterations; the solution by Newton is almost the same as that by PNT, thereby
we omit it. We also plot the optimal Tikhonov regularized solution as a comparison,
where the DP solution is very similar and omitted. Both PNT and genHyb can recover
good regularized solutions, and PNT is slightly better for heat.
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Fig. 4. Variation of the condition number of J(k)(\=\bfity k - 1, \lambda k - 1) during the iteration of PNT.
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To further demonstrate the performance of PNT, we present the variation of the
condition number of J (k)(\=\bfity k - 1, \lambda k - 1) during the iteration of PNT in Figure 4. This

condition number is denoted by \kappa (J (k)) in the two pictures. We observe that the
condition number does not increase significantly during the iteration. This ensures

Fig. 3. Comparison of reconstructed solutions at the final iterations with the optimal Tikhonov
regularized solution. Top: heat. Bottom: shaw.
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solution is slightly higher than the optimal Tikhonov solution, because DP slightly
under-estimates \lambda . The merit functions of both PNT and Newton decrease monoton-
ically, and h(\bfitx k, \lambda k) of PNT eventually decreases to an extremely small value for the
two problems. We remark that we set w = 1 for hw(\bfitx , \lambda ) in all the tests. For Newton
method for heat, we stop the iterate at k = 34 because the step-length \gamma k is too
small. In comparison, genHyb converges much slower than the previous two methods,
especially for heat.
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Figure 3 plots the recovered solutions computed by PNT and genHyb methods at
the final iterations; the solution by Newton is almost the same as that by PNT, thereby
we omit it. We also plot the optimal Tikhonov regularized solution as a comparison,
where the DP solution is very similar and omitted. Both PNT and genHyb can recover
good regularized solutions, and PNT is slightly better for heat.
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To further demonstrate the performance of PNT, we present the variation of the
condition number of J (k)(\=\bfity k - 1, \lambda k - 1) during the iteration of PNT in Figure 4. This

condition number is denoted by \kappa (J (k)) in the two pictures. We observe that the
condition number does not increase significantly during the iteration. This ensures

Fig. 4. Variation of the condition number of J(k)(\=\bfity k - 1, \lambda k - 1) during the iteration of PNT.
Left: heat. Right: shaw.

Table 2
Running time (measured in seconds) of PNT, Ch-PNT, and Newton methods as the scale of the

problems increasing from n = 1000 to n = 5000. Both of the two methods stop at the first k (in
parentheses) such that | \| \bfitA \bfitx k  - \bfitb \| 2

\bfitM  - 1  - \tau m| \leq 10 - 8. The ratio of the running time between PNT
and Ch-PNT is denoted as ratio-1, while the ratio of the running time between PNT and Newton is
denoted as ratio-2.

n 1000 2000 3000 4000 5000

heat

PNT 0.021(18) 0.114(21) 0.164 (19) 0.347 (19) 0.492 (19)
Ch-PNT 0.032 (18) 0.280 (21) 0.375 (19) 0.764 (19) 1.314 (19)
Newton 0.249 (10) 2.568 (11) 6.062 (10) 13.914 (10) 26.127 (11)

ratio-1 1.5 2.5 2.3 2.2 2.7
ratio-2 11.9 22.5 37.0 40.1 53.1

shaw

PNT 0.014 (17) 0.051 (16) 0.158 (17) 0.293 (18) 0.479 (19)

Ch-PNT 0.051 (17) 0.170 (16) 0.438 (19) 0.873 (18) 1.819 (19)
Newton 0.455 (16) 3.675 (15) 8.904 (14) 26.835 (16) 52.768 (16)

ratio-1 3.6 3.3 2.8 3.0 3.8

ratio-2 32.5 72.1 56.4 91.6 110.2
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that the small-scale linear system (3.12a) can be solved directly via matrix inversions
without any issues.

Table 2
Running time (measured in seconds) of PNT, Ch-PNT and Newton methods as the scale of the

problems increasing from n = 1000 to n = 5000. Both the two methods stop at the first k (in

parentheses) such that
\bigm| \bigm| \bigm| \| \bfitA \bfitx k  - \bfitb \| 2

\bfitM  - 1  - \tau m
\bigm| \bigm| \bigm| \leq 10 - 8. The ratio of the running time between PNT

and Ch-PNT is denoted as ratio-1, while the ratio of the running time between PNT and Newton is
denoted as ratio-2.

n 1000 2000 3000 4000 5000

heat

PNT 0.021 (18) 0.114 (21) 0.164 (19) 0.347 (19) 0.492 (19)
Ch-PNT 0.032 (18) 0.280 (21) 0.375 (19) 0.764 (19) 1.314 (19)
Newton 0.249 (10) 2.568 (11) 6.062 (10) 13.914 (10) 26.127 (11)
ratio-1 1.5 2.5 2.3 2.2 2.7
ratio-2 11.9 22.5 37.0 40.1 53.1

shaw

PNT 0.014 (17) 0.051 (16) 0.158 (17) 0.293 (18) 0.479 (19)
Ch-PNT 0.051 (17) 0.170 (16) 0.438 (19) 0.873 (18) 1.819 (19)
Newton 0.455 (16) 3.675 (15) 8.904 (14) 26.835 (16) 52.768 (16)
ratio-1 3.6 3.3 2.8 3.0 3.8
ratio-2 32.5 72.1 56.4 91.6 110.2
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Fig. 5. Comparison of scalability of PNT, Ch-PNT and Newton methods as the scale of the
problems increasing from n = 1000 to n = 5000. Left: heat. Right: shaw.

To show the advantage of the computational efficiency of PNT over Ch-PNT
and Newton, we gradually increase the scale of the test problems and measure the
running time of the three methods, where all of them stop at the first iteration such
that

\bigm| \bigm| \| \bfitA \bfitx k  - \bfitb \| 2
\bfitM  - 1  - \tau m

\bigm| \bigm| \leq 10 - 8. The time data are listed in Table 2. We also
compute the ratio of the running time, i.e. the value of Ch-PNT-time/PNT-time and
Newton-time/PNT-time. For shaw, we find that all three methods stop with similar
iteration numbers, and the computational speed of PNT is much faster than Newton,
with the speedup ratio varying from 41 to 157. For heat, we find that Newton stops
with only about half iteration numbers of PNT's. However, the total running time
of PNT is still much smaller than Newton's, with the speedup ratio varying from 8

Fig. 5. Comparison of scalability of PNT, Ch-PNT, and Newton methods as the scale of the
problems increasing from n= 1000 to n= 5000. Left: heat. Right: shaw.

numbers, and the computational speed of PNT is much faster than Newton, with the
speedup ratio varying from 41 to 157. For heat, we find that Newton stops with only
about half iteration numbers of PNT's. However, the total running time of PNT is
still much smaller than Newton's, with the speedup ratio varying from 8 to 43. To
compare the scalability of PNT, Ch-PNT and Newton more clearly, we use the data in
Table 2 to plot the curve of time growth with respect to n in Figure 5. Clearly, PNT
saves much more time compared to Newton while obtaining solutions with the same
accuracy. Although the advantage of PNT over Ch-PNT is not significant for small-
scale problems, Ch-PNT is not feasible for large-scale problems due to the prohibitive
cost of Cholesky factorization.

5.2. Large-scale problems. We choose three two-dimensional (2D) image de-
blurring and computed tomography inverse problems from [18]. The first problem is
PRblurshake, which simulates a spatially invariant motion blur caused by the shak-
ing of a camera. The second problem is PRblurspeckle, which simulates a spatially
invariant blur caused by atmospheric turbulence. The third problem is PRspherical
that models spherical means tomography. The true images and noisy observed data
are shown in Figure 6, where all the images have 128\times 128 pixels, and \bfitepsilon are uncorre-
lated nonwhite Gaussian noises with \varepsilon = 10 - 3, 5\times 10 - 3, and 10 - 2, respectively. We
have m= n= 1282 for the first two problems, and m= 23168, n= 1282 for the third
problem.

For PRblurshake and PRblurspeckle, we construct \bfitN using the Gaussian kernel
with l= 10 and l= 1, respectively. For PRspherical, we construct \bfitN using the Mat\'ern
kernel

KM (r) :=
21 - \nu 

\Gamma (\nu )

\Biggl( \surd 
2\nu r

l

\Biggr) \nu 

B\nu 

\Biggl( \surd 
2\nu r

l

\Biggr) 
,

where \Gamma (\cdot ) is the gamma function, B\nu (\cdot ) is the modified Bessel function of the second
kind, and l and \nu are two positive parameters of the covariance; we set l= 100 and \nu =
1.5. For the three large-scale problems, it is almost impossible to get (\mu opt,\bfitx (\mu opt))
and (\mu DP ,\bfitx (\mu DP )) by solving (1.3). The standard Newton method and the methods
in [13, 14] cannot be applied because these methods have to deal with \bfitN  - 1. To test
the performance of PNT, here we only compare it with genHyb. Additionally, we also
implement PNT-md to demonstrate that it can save some computation compared to
PNT.
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to 43. To compare the scalability of PNT, Ch-PNT and Newton more clearly, we use
the data in Table 2 to plot the curve of time growth with respect to n. Clearly, PNT
saves much more time compared to Newton while obtaining solutions with the same
accuracy. Although the advantage of PNT over Ch-PNT is not significant for small-
scale problems, Ch-PNT is not feasible for large-scale problems due to the prohibitive
cost of Cholesky factorization.

5.2. Large-scale problems. We choose three 2D image deblurring and com-
puted tomography inverse problems from [18]. The first problem is PRblurshake, which
simulates a spatially invariant motion blur caused by the shaking of a camera. The
second problem is PRblurspeckle, which simulates a spatially invariant blur caused
by atmospheric turbulence. The third problem is PRspherical that models spherical
means tomography. The true images and noisy observed data are shown in Figure 6,
where all the images have 128\times 128 pixels, and \bfitepsilon are uncorrelated non-white Gaussian
noises with \varepsilon = 10 - 3, 5 \times 10 - 3 and 10 - 2, respectively. We have m = n = 1282 for
the first two problems, and m = 23168, n = 1282 for the third problem.
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Fig. 6. True solution and noisy observed data for deblurring and tomography problems. From
the leftmost column to the rightmost column are PRblurshake, PRblurspeckle and PRspherical.

For PRblurshake and PRblurspeckle, we construct \bfitN using the Gaussian kernel
with l = 10 and l = 1, respectively. For PRspherical, we construct \bfitN using the
Mat\'ern kernel

KM (r) :=
21 - \nu 

\Gamma (\nu )

\Biggl( \surd 
2\nu r

l

\Biggr) \nu 

B\nu 

\Biggl( \surd 
2\nu r

l

\Biggr) 
,

where \Gamma (\cdot ) is the gamma function, B\nu (\cdot ) is the modified Bessel function of the second
kind, and l and \nu are two positive parameters of the covariance; we set l = 100 and \nu =
1.5. For the three large-scale problems, it is almost impossible to get (\mu opt,\bfitx (\mu opt))
and (\mu DP ,\bfitx (\mu DP )) by solving (1.3). The standard Newton method and the methods
in [13, 14] can not be applied because these methods have to deal with \bfitN  - 1. To test
the performance of PNT, here we only compare it with genHyb. Additionally, we also

Fig. 6. True solution and noisy observed data for deblurring and tomography problems. From
the leftmost column to the rightmost column are PRblurshake, PRblurspeckle, and PRspherical.
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implement PNT-md to demonstrate that it can save some computation compared to
PNT.
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Fig. 7. Relative errors of iterative solutions, convergence of \lambda k, and convergence of merit
functions. Top: PRblurshake. Middle: PRblurspeckle. Bottom: PRspherical.

The relative error curves of the three methods, the convergence curves of \lambda k and
h(\bfitx k, \lambda k) are plotted in Figure 7. For PNT-md, we set k0 = 150, 80, 50 for the three
problems, respectively. It can be observed that PNT for the last two problems con-
verges very fast: the variations of relative error and \lambda k become quickly stabilized after
50 to 150 iterations, although for the second problem h(\bfitx k, \lambda k) are still decreasing
significantly after 200 iterations. The genHyb method for PRblurshake and PRspher-
ical converges slower, and it obtains two solutions with larger relative errors than
that of PNT. This is because genHyb under-estimates \lambda more than PNT. For all three
problems, PNT-md converges very quickly from k0, achieving solutions with the same
accuracy as PNT while requiring nearly the same total number of iterations. The
reconstructed images are shown in Figure 8, which reveals the effectiveness of PNT
and genHyb. The variation of the condition number of J (k)(\=\bfity k - 1, \lambda k - 1) is shown
in Figure 9. The condition number does not grow very large during the iteration,
allowing the small-scale linear system (3.12a) to be solved directly without issues.

To further test the robustness of PNT and genHyb as the noise level gradually
increases, we set the noise level of PRblurspeckle to be \varepsilon = 5\times 10 - 2, 10 - 1, 5\times 10 - 1.
Figure 10 shows the corresponding relative error curves and the curves of h(\bfitx k, \lambda k).
We can find that, when the noise is not very big, both PNT and genHyb converge
stably with almost the same accuracy. However, when the noise gradually increases,
the situations are very different. First, we find that as the noise increases, PNT still

Fig. 7. Relative errors of iterative solutions, convergence of \lambda k, and convergence of merit func-
tions. Top: PRblurshake. Middle: PRblurspeckle. Bottom: PRspherical.
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Fig. 8. Reconstructed solutions at the final iterations by PNT and genHyb. From the leftmost
column to the rightmost column are PRblurshake, PRblurspeckle, and PRspherical.

0 50 100 150 200 250 300 350

Iteration

10
0

10
2

10
4

10
6

10
8

10
10

10
12

0 20 40 60 80 100 120 140 160 180 200

Iteration

10
0

10
1

10
2

10
3

10
4

10
5

0 50 100 150

Iteration

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Fig. 9. Variation of the condition number of J(k)(\=\bfity k - 1, \lambda k - 1) during the iteration of PNT.
Left: PRblurshake. Middle: PRblurspeckle Right: PRspherical.

converges stably, and faster. Second, h(\bfitx k, \lambda k) can always decrease to an extremely
small value, which is promised by Theorem 4.1. The iterate of PNT stops when the
step-length \gamma k becomes too small (less than 10 - 16), which happens more early if the
noise is bigger. In comparison, the convergence of genHyb becomes unstable as the
noise increases. For \varepsilon = 10 - 1, it can be observed that the relative error for genHyb in-
creases slightly after a certain iteration, while for \varepsilon = 5\times 10 - 1, the increase of relative
error appears earlier and more clearly. This is a typical potential weakness of hybrid
regularization methods, a challenge that the PNT method successfully addresses.

6. Conclusion. For large-scale Bayesian linear inverse problems, we have pro-
posed the projected Newton (PNT) method as a novel iterative approach for simulta-
neously updating both the regularization parameter and solution without any com-
putationally expensive matrix inversions or decompositions. By reformulating the
Tikhonov regularization as a corresponding constrained minimization problem and
leveraging its Lagrangian function, the regularized solution and the corresponding
Lagrangian multiplier can be obtained from the unconstrained Lagrangian function
using a Newton-type method. To reduce the computational overhead of the New-

Fig. 8. Reconstructed solutions at the final iterations by PNT and genHyb. From the leftmost
column to the rightmost column are PRblurshake, PRblurshake, and PRspherical.
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Fig. 8. Reconstructed solutions at the final iterations by PNT and genHyb. From the leftmost
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Fig. 9. Variation of the condition number of J(k)(\=\bfity k - 1, \lambda k - 1) during the iteration of PNT.
Left: PRblurshake. Middle: PRblurspeckle Right: PRspherical.

converges stably, and faster. Second, h(\bfitx k, \lambda k) can always decrease to an extremely
small value, which is promised by Theorem 4.1. The iterate of PNT stops when the
step-length \gamma k becomes too small (less than 10 - 16), which happens more early if the
noise is bigger. In comparison, the convergence of genHyb becomes unstable as the
noise increases. For \varepsilon = 10 - 1, it can be observed that the relative error for genHyb in-
creases slightly after a certain iteration, while for \varepsilon = 5\times 10 - 1, the increase of relative
error appears earlier and more clearly. This is a typical potential weakness of hybrid
regularization methods, a challenge that the PNT method successfully addresses.

6. Conclusion. For large-scale Bayesian linear inverse problems, we have pro-
posed the projected Newton (PNT) method as a novel iterative approach for simulta-
neously updating both the regularization parameter and solution without any com-
putationally expensive matrix inversions or decompositions. By reformulating the
Tikhonov regularization as a corresponding constrained minimization problem and
leveraging its Lagrangian function, the regularized solution and the corresponding
Lagrangian multiplier can be obtained from the unconstrained Lagrangian function
using a Newton-type method. To reduce the computational overhead of the New-

Fig. 9. Variation of the condition number of J(k)(\=\bfity k - 1, \lambda k - 1) during the iteration of PNT.
Left: PRblurshake. Middle: PRblurspeckle. Right: PRspherical.

The relative error curves of the three methods, the convergence curves of \lambda k and
h(\bfitx k, \lambda k) are plotted in Figure 7. For PNT-md, we set k0 = 150,80,50 for the three
problems, respectively. It can be observed that PNT for the last two problems con-
verges very fast: the variations of relative error and \lambda k become quickly stabilized after
50 to 150 iterations, although for the second problem h(\bfitx k, \lambda k) are still decreasing
significantly after 200 iterations. The genHyb method for PRblurshake and PRspher-
ical converges slower, and it obtains two solutions with larger relative errors than
that of PNT. This is because genHyb underestimates \lambda more than PNT. For all three
problems, PNT-md converges very quickly from k0, achieving solutions with the same
accuracy as PNT while requiring nearly the same total number of iterations. The re-
constructed images are shown in Figure 8, which reveals the effectiveness of PNT and
genHyb. The variation of the condition number of J (k)(\=\bfity k - 1, \lambda k - 1) is shown in Figure
9. The condition number does not grow very large during the iteration, allowing the
small-scale linear system (3.12a) to be solved directly without issues.

To further test the robustness of PNT and genHyb as the noise level gradually
increases, we set the noise level of PRblurspeckle to be \varepsilon = 5\times 10 - 2, 10 - 1, 5\times 10 - 1.
Figure 10 shows the corresponding relative error curves and the curves of h(\bfitx k, \lambda k).
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Fig. 10. Relative errors of iterative solutions by PNT and genHyb, and the decrease of h(\bfitx k, \lambda k).
The test problem is PRblurspeckle. From the leftmost column to the rightmost column, the noise levels
are \varepsilon = 5\times 10 - 2, 10 - 1, 5\times 10 - 1.

ton method, the generalized Golub-Kahan bidiagonalization is applied to project the
original large-scale problem to become small-scale ones, where the projected Newton
direction is obtained by solving the small-scale linear system at each iteration. We
have proved that the projected Newton direction is a descent direction of a merit func-
tion, and the points generated by PNT eventually converge to the unique minimizer
of this merit function, which is just the regularized solution and the corresponding
Lagrangian multiplier.

Experimental tests on both small and large-scale Bayesian inverse problems have
demonstrated the excellent convergence property, robustness and efficiency of PNT.
The most demanding computational tasks in PNT are primarily matrix-vector prod-
ucts, making it particularly well-suited for large-scale problems.

An important remaining question is the convergence rate of PNT, i.e., how fast
the three quantities \| \bfitx k  - \bfitx DP \| 2, | \lambda k  - \lambda DP | and h(\bfitx k, \lambda k) converge to zero? The
convergence rate may depend on several factors, including the ill-posedness of (1.1),
the smoothness of the true solution, the noise level, and the properties of \{ \bfitA ,\bfitM ,\bfitN \} .
We will conduct theoretical investigations into this issue in future work.
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simultaneously updating both the regularization parameter and solution without any
computationally expensive matrix inversions or decompositions. By reformulating the
Tikhonov regularization as a corresponding constrained minimization problem and
leveraging its Lagrangian function, the regularized solution and the corresponding
Lagrangian multiplier can be obtained from the unconstrained Lagrangian function
using a Newton-type method. To reduce the computational overhead of the New-
ton method, the generalized Golub--Kahan bidiagonalization is applied to project the
original large-scale problem to become small-scale ones, where the projected Newton
direction is obtained by solving the small-scale linear system at each iteration. We
have proved that the projected Newton direction is a descent direction of a merit func-
tion, and the points generated by PNT eventually converge to the unique minimizer
of this merit function, which is just the regularized solution and the corresponding
Lagrangian multiplier.

Experimental tests on both small-scale and large-scale Bayesian inverse problems
have demonstrated the excellent convergence property, robustness, and efficiency of
PNT. The most demanding computational tasks in PNT are primarily matrix-vector
products, making it particularly well-suited for large-scale problems.
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An important remaining question is the convergence rate of PNT, i.e., how fast
the three quantities \| \bfitx k  - \bfitx DP \| 2, | \lambda k  - \lambda DP | , and h(\bfitx k, \lambda k) converge to zero? The
convergence rate may depend on several factors, including the ill-posedness of (1.1),
the smoothness of the true solution, the noise level, and the properties of \{ \bfitA ,\bfitM ,\bfitN \} .
We will conduct theoretical investigations into this issue in future work.
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