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The singular value decomposition (SVD) of a matrix is a powerful tool for many matrix 
computation problems. In this paper, we consider a generalization of the standard SVD to analyze 
and compute the regularized solution of linear ill-posed problems that arise from discretizing 
the first kind Fredholm integral equations. For the commonly used quadrature method for 
discretization, a regularizer of the form ‖𝑥‖2

𝑀
∶= 𝑥⊤𝑀𝑥 should be exploited, where 𝑀 is 

symmetric positive definite. To handle this regularizer, we use the weighted SVD (WSVD) of 
a matrix under the 𝑀 -inner product. Several important applications of the WSVD, such as low
rank approximation and solving the least squares problems with minimum ‖ ⋅ ‖𝑀 -norm, are 
studied. We propose the weighted Golub-Kahan bidiagonalization (WGKB) to compute several 
dominant WSVD components and a corresponding weighted LSQR algorithm to iteratively solve 
the least squares problem. All the above tools and methods are used to analyze and solve linear 
ill-posed problems with the regularizer ‖𝑥‖2

𝑀
. Several WGKB based iterative regularization and 

hybrid regularization methods are proposed to compute a good regularized solution, which can 
incorporate the prior information about 𝑥 encoded by the regularizer ‖𝑥‖2

𝑀
. Several numerical 

experiments are performed to illustrate the fruitfulness of our methods.

1. Introduction

The singular value decomposition (SVD) is a well-known matrix factorization tool for diagonalizing a matrix with arbitrary shape 
[42]. It generalizes the eigen-decomposition of a square normal matrix to any 𝑚×𝑛 matrix. Let 𝐴 ∈ℝ𝑚×𝑛, then there exist orthogonal 
matrices 𝑈̂ = (𝑢̂1,… , 𝑢̂𝑚) ∈ℝ𝑚×𝑚 and 𝑉 = (𝑣̂1,… , 𝑣̂𝑛) ∈ℝ𝑛×𝑛, such that

𝑈̂⊤𝐴𝑉 = Σ̂ (1.1)

with

Σ̂ =
(
Σ̂𝑞

𝟎

)
, 𝑚 ≥ 𝑛 or Σ̂ =

(
Σ̂𝑞 𝟎

)
, 𝑚< 𝑛, (1.2)

where 𝑞 =min{𝑚,𝑛} and Σ̂𝑞 = diag(𝜎̂1,… , 𝜎̂𝑞) ∈ℝ𝑞×𝑞 is a diagonal matrix. The real values 𝜎̂1 ≥⋯ ≥ 𝜎̂𝑞 ≥ 0 are called singular values, 
and the corresponding vectors 𝑢𝑖 and 𝑣𝑖 are called right and left singular vectors, respectively.
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The applications of the SVD encompass a wide range of areas. The mathematical applications include determining the rank, range 
and null spaces of a matrix, computing the pseudoinverse of a matrix, determining a low-rank approximation of a matrix, solving 
linear least squares problems, solving discrete linear ill-posed problems, and many others [11,21,2,18]. We will review some of 
these applications in Section 2. Additionally, the SVD is highly useful in various areas of science and engineering, including signal 
processing, image processing, principal component analysis, control theory, recommender systems, and many others [41,38,22,24]. 
For a large-scale matrix 𝐴, a partial SVD can be computed by using the Golub-Kahan bidiagonalization (GKB), which generates two 
Krylov subspaces and projects 𝐴 onto these two subspaces to get a small-scale bidiagonal matrix [16]. The bidiagonal structure of the 
projected matrix makes it convenient to develop efficient algorithms. For example, the dominant singular values and corresponding 
vectors of 𝐴 can be well approximated by the SVD of the projected bidiagonal matrix [8]. It is also shown in [40] that a good low-rank 
approximation of 𝐴 can be directly obtained from the GKB of 𝐴 without directly computing any SVD. For large sparse least squares 
(LS) problem of the form min𝑥∈ℝ𝑛 ‖𝐴𝑥− 𝑏‖2, one of the most commonly used LSQR solver is also based on GKB [35]. We remark that 
LSQR is mathematically equivalent to applying the conjugate gradient algorithm to the normal equation 𝐴⊤𝐴 =𝐴⊤𝑏.

In this paper, we focus on generalizing the SVD to analyze and compute the regularized solution of the first kind Fredholm equation 
[29]

𝑔(𝑠) =

𝑡2

∫
𝑡1

𝐾(𝑠, 𝑡)𝑓 (𝑡)d𝑡+ 𝜎𝑊̇ (𝑠) (1.3)

with 𝑡 ∈ [𝑡1, 𝑡2] and 𝑠 ∈ [𝑠1, 𝑠2], where 𝐾(𝑠, 𝑡) ∈ 𝐿2 (
[𝑡1, 𝑡2] × [𝑠1, 𝑠2]

)
is a square-integrable kernel function, 𝑊̇ (𝑠) is the Gaussian 

white noise, more precisely, the generalized derivative of the standard Brownian motion 𝑊 (𝑠) with 𝑠 ∈ [𝑠1, 𝑠2] [26], 𝜎 is the scale 
of the noise, and 𝑔(𝑠) is the observation. The aim is to recover the unknown 𝑓 (𝑡) from the noisy observation. To solve this problem, 
the first step is to discretize the above integral equation. Two commonly used discretization methods are the quadrature method and 
Galerkin method [28], and we focus on the first one in this paper. In the quadrature method, a quadrature rule with grid points 
{𝑝1,… , 𝑝𝑛} and corresponding weights {𝑤1,… ,𝑤𝑛} are chosen to approximate the integral as

𝑡2

∫
𝑡1

𝐾(𝑠, 𝑡)𝑓 (𝑡)d𝑡 ≈
𝑛 ∑

𝑖=1 
𝑤𝑖𝐾(𝑠, 𝑝𝑖)𝑓 (𝑝𝑖) (1.4)

and the underlying unknown function we want to recover becomes the 𝑛-dimensional vector 𝑥true = (𝑓 (𝑝1),… , 𝑓 (𝑝𝑛))⊤. The observa
tions are chosen from 𝑚 grid points in [𝑠1, 𝑠2] to get a 𝑚-dimensional noisy vector 𝑏. After discretization, the above integral equation 
(1.3) becomes

𝑏 =𝐴𝑥+ 𝑒, (1.5)

where 𝑒 is the noise vector in the discrete case, and 𝑏 is a perturbed version of the unknown exact observation. We remark that for 
the discrete system, the noise comes from both the observational noise and the discretization error.

Since the integral operator 𝑇𝐾 corresponding to the square-integrable kernel 𝐾(𝑠, 𝑡) is a linear compact operator, the singular 
values of 𝑇𝐾 gradually decay to zero without a noticeable gap when 𝑇𝐾 is not degenerate. As a result, after discretization, the matrix 
𝐴 becomes increasingly ill-conditioned as 𝑛 increases, making the discrete linear system (1.5) ill-posed [21]. As a result, the naive 
solution to the LS problem min𝑥∈ℝ𝑛 ‖𝐴𝑥−𝑏‖2 will deviate very far from the true solution 𝑥true. Tikhonov regularization is usually used 
to handle the ill-posedness property of this problem [43], where a specific regularization strategy depends both on the noise type and 
the prior information about the true solution. For example, for a Gaussian white noise 𝑒, the standard-form Tikhonov regularization 
has the form

min 
𝑥∈ℝ𝑛

‖𝐴𝑥− 𝑏‖22 + 𝜆‖𝑥‖22, (1.6)

where the 2-norm regularization term enforces some smoothness on the solution. However, we emphasize that the regularization term ‖𝑥‖22 arises from the discretized version of ‖𝑓‖𝐿2([𝑡1 ,𝑡2]); here 𝐿2([𝑡1, 𝑡2]) is the space of square-integrable functions defined on [𝑡1, 𝑡2]
with Lebesgue measure. If all the weights in the quadrature rule for the integral in (1.4) have the same value, which corresponds 
to the midpoint rule for numerical integral, then the vector norm ‖𝑥‖2 is a good approximation to ‖𝑓‖𝐿2([𝑡1 ,𝑡2]). However, the 
midpoint rule has relatively lower accuracy, which results in a higher discretization error and amplifies the solution error due to 
the ill-posedness of the inverse problem. Using other quadrature rules with higher accuracy, such as the Simpson’s rule or Gaussian 
quadrature, the weights will have different values, and a good approximation to ‖𝑓‖𝐿2([𝑡1 ,𝑡2]) should be ‖𝑥‖𝑀 instead of ‖𝑥‖2, where ‖𝑥‖𝑀 = (𝑥⊤𝑀𝑥)1∕2 with 𝑀 = diag(𝑤1,… ,𝑤𝑛). In this case, the standard-form Tikhonov regularization should be replaced by

min 
𝑥∈ℝ𝑛

‖𝐴𝑥− 𝑏‖22 + 𝜆‖𝑥‖2
𝑀
. (1.7)

Using the standard SVD of 𝐴, we can analyze and compute the ill-posed problem (1.5) with the regularizer ‖𝑥‖22. For example, the 

naive solution to min𝑥∈ℝ𝑛 ‖𝐴𝑥− 𝑏‖2 can be expressed by the SVD expansion form 𝑥𝐿𝑆 =𝐴†𝑏 =
∑𝑛

𝑖=1
𝑢̂⊤
𝑖
𝑏

𝜎̂𝑖
𝑣̂𝑖, where ``†'' is the Moore

Penrose pseudoinverse [18, 5.5.2]. This motivates the so-called ``truncated SVD'' (TSVD) regularization method, where the regularized 
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solution is formed as 𝑥𝑘 =
∑𝑘

𝑖=1
𝑢̂⊤
𝑖
𝑏

𝜎̂𝑖
𝑣̂𝑖 by truncating the first 𝑘 dominant SVD expansion from 𝑥𝐿𝑆 to discard those highly amplified 

noisy components [19]. Moreover, the Tikhonov regularized solution to (1.6) can be expressed as the filtered SVD expansion form 

𝑥𝜆 =
∑𝑛

𝑖=1
𝜎̂2
𝑖

𝜎̂2
𝑖
+𝜆

𝑢̂⊤
𝑖
𝑏

𝜎̂𝑖
𝑣̂𝑖, which tells us that the regularization parameter 𝜆 should be chosen such that the filter factors 𝑓𝑖 ∶=

𝜎̂2
𝑖

𝜎̂2
𝑖
+𝜆

≈ 1
for small index 𝑖 and 𝑓𝑖 ≈ 0 for large 𝑖 to suppress noisy components. For large-scale ill-posed problems, the GKB process can be 
exploited to design iterative regularization algorithms [34,1]. The LSQR solver with early stopping rules is a standard algorithm to 
handle the regularizer ‖𝑥‖22. Specifically, the regularization property of LSQR with early stopping rules has been analyzed using the 
SVD of 𝐴, where the 𝑘-th LSQR solution also has a filtered SVD expansion form [21].

To analyze the ill-posed problem (1.5) with the regularizer ‖𝑥‖2
𝑀

, we use the generalization of the standard SVD of 𝐴 under 
a nonstandard inner product. Specifically, the usual 2-inner product in ℝ𝑛 is replaced by the 𝑀 -inner product ⟨𝑧, 𝑧′⟩ ∶= 𝑧⊤𝑀𝑧′. 
The core idea is to treat the matrix 𝐴 ∈ ℝ𝑚×𝑛 as a linear operator between the two finite-dimensional Hilbert spaces 

(
ℝ𝑛, ⟨⋅, ⋅⟩𝑀)

and 
(
ℝ𝑚, ⟨⋅, ⋅⟩2). The attempt to generalize SVD is not new, which can go back to Van Loan in 1976 [44], where he proposed the 

generalized SVD (GSVD) for a matrix pair. The GSVD is a powerful tool to analyze the general-form Tikhonov regularization term ‖𝐿𝑥‖22, where 𝐿 ∈ℝ𝑝×𝑛 with 𝑝 ≤ 𝑛 is a regularization matrix. In recent years, there have been several other generalized forms of the 
SVD, such as the weighted SVD of different forms proposed in [39,30,25]. Specifically, in [25], the authors used the weighted SVD to 
solve the discrete ill-posed problem arising from (1.3) when 𝑓 (𝑡) and 𝑔(𝑠) are discretized on the same grid points with [𝑡1, 𝑡2] = [𝑠1, 𝑠2]
and 𝑚 = 𝑛. In their paper, both the data fidelity term and regularization term use the weighted 𝑀 -norm. However, we emphasize 
that for the discrete observation vector 𝑏 with Gaussian white noise, the most appropriate form for the data fidelity term should be ‖𝐴𝑥− 𝑏‖22.

In this paper, we consider a new generalization of the SVD, investigate its properties and propose numerical algorithms for its 
computation. Then we use this generalized SVD to investigate the solution of the linear least squares problems with minimum ‖𝑥‖𝑀
norm and propose an iterative algorithm for this problem. This iterative algorithm with proper early stopping rules can be used 
to handle the discrete ill-posed problem with regularization term ‖𝑥‖2

𝑀
. In contrast to the work of [39,30], which focuses on the 

theoretical foundation of the WSVD, our results place greater emphasis on its applications and related computations, particularly in 
the context of ill-posed inverse problems.

The main contributions of this paper are listed as follows.

• For any symmetric positive definite matrix 𝑀 ∈ℝ𝑛×𝑛, we recall a generalization of the SVD of 𝐴 ∈ℝ𝑚×𝑛 called the weighted SVD 
(WSVD), where the right singular vectors constitute an 𝑀 -orthonormal basis of 

(
ℝ𝑛, ⟨⋅, ⋅⟩𝑀)

. We study several of its properties 
and applications, including a new form of low-rank approximation of 𝐴 based on the WSVD and the WSVD form expression of 
the minimum ‖𝑥‖𝑀 -norm solution to min𝑥∈ℝ𝑛 ‖𝐴𝑥− 𝑏‖2.

• We propose a weighted Golub-Kahan bidiagonalization (WGKB) process, which can be used to compute several dominant WSVD 
components, namely the singular values and singular vectors corresponding to the WSVD. A WGKB-based iterative algorithm 
for solving the least squares problems is also proposed. It is a weighted form corresponding to the standard LSQR algorithms, 
thereby we name it weighted LSQR (WLSQR).

• Using the WSVD, we analyze the solution of the Tikhonov regularization problem (1.7). In order to utilize the information from 
the regularizer ‖𝑥‖2

𝑀
and avoid selecting 𝜆 in advance, we propose the subspace projection regularization (SPR) method. We 

show that the WGKB-based SPR method is just the WLSQR with early stopping rules, which can efficiently compute a satisfied 
regularized solution. To overcome the semi-convergence of the WGKB-based SPR method, we also propose a WGKB-based hybrid 
regularization method.

In the numerical experiments, we use both 1-dimensional and 2-dimensional first kind Fredholm equations to test our WGKB-based 
iterative regularization and hybrid regularization algorithms. With the Simpson’s rule for discretizing the integral, we show that the 
proposed algorithms have better performance than the standard LSQR solver for regularizing the original problem. We remark that 
if we use the Galerkin method with a group of orthogonal basis functions for 𝑓 (𝑡) to discretize (1.4), then we will also get a diagonal 
matrix 𝑀 . However, if the basis functions are not orthogonal, then 𝑀 can be a dense matrix, and in this case, the methods presented 
in this paper would face the challenge of computing 𝑀−1.

The paper is organized as follows. In Section 2 we review some basic properties and applications of the SVD. In Section 3, we 
propose the weighted SVD of 𝐴 with weight matrix 𝑀 and investigate its properties. In Section 4, we propose the WGKB process to 
compute several dominant WSVD components and the WLSQR algorithms for solving least squares problems. All the above methods 
are used in Section 5 to analyze and develop both iterative regularization and hybrid regularization methods for linear ill-posed 
problems with regularizer ‖𝑥‖2

𝑀
. In Section 6, we use several numerical examples to illustrate the effectiveness of the new methods. 

Finally, we conclude the paper in Section 7.
Throughout the paper, denote by (𝐶) and  (𝐶) the range space and null space of a matrix 𝐶 , by 𝐼𝑘 the 𝑘-by-𝑘 identity matrix. 

We denote by 𝟎 a zero vector or matrix with its order clear from the context.

2. Properties of the SVD and its applications

In this section, we review several important properties of the SVD and its applications to linear ill-posed problems. They motivate 
us to generalize the SVD to the nonstandard inner product case, which can be applied to handle the regularizer of the form (1.7).
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Let us start from the connections between the SVD, Schatten 𝑝-norm [23, §7.4.7], and low-rank approximation of a matrix [18, 
§2.4].

Theorem 2.1 (Schatten 𝑝-norm). Suppose the SVD of a matrix 𝐴 is as in (1.1). For any integer 1≤ 𝑝 ≤∞, define

⫴𝐴⫴𝑝 =
⎧⎪⎨⎪⎩
(∑min{𝑚,𝑛}

𝑖=1 𝜎̂
𝑝

𝑖

)1∕𝑝
, 𝑝 ≠∞

𝜎̂1, 𝑝 =∞.

Then ⫴ ⋅⫴𝑝 is a matrix norm on ℝ𝑚×𝑛, called the Schatten 𝑝-norm.

The specific choice of 𝑝 yields several commonly used matrix norms:

1. 𝑝 = 1: gives the nuclear norm. It is commonly used in low-rank matrix completion algorithms.
2. 𝑝 = 2: gives the Frobenius norm (often denoted by ‖ ⋅ ‖𝐹 ).
3. 𝑝 =∞: gives the spectral norm (often denoted by ‖ ⋅ ‖2). Note that ⫴𝐴⫴∞ = lim 

𝑝→∞
⫴𝐴⫴𝑝.

All the Schatten norms are unitarily invariant, which means that ⫴𝐴⫴𝑝 = ⫴𝑈̄⊤𝐴𝑉 ⫴𝑝 for any matrix 𝐴 and all unitary matrices 𝑈̄
and 𝑉 . In this paper, we focus on the spectral norm and use the popular notation ‖ ⋅ ‖2 to denote it. From another definition of the 
spectral norm, we also have ‖𝐴‖2 = max𝑥≠𝟎 ‖𝐴𝑥‖2‖𝑥‖2 = 𝜎̂1.

One of the reasons that the SVD is so widely used is that it can be used to find the best low-rank approximation to a matrix. The 
following low-rank approximation property is often used such as in data compression, image compression and recommender systems.

Theorem 2.2 (Eckhart-Young-Mirsky). Suppose 𝑘 < rank(𝐴) = 𝑟 and let

𝐴̂𝑘 = 𝑈̂𝑘Σ̂𝑘𝑉
⊤
𝑘

=
𝑘 ∑
𝑖=1 

𝜎̂𝑖𝑢̂𝑖𝑣̂
⊤
𝑖
, (2.1)

where 𝑈̂𝑘 and 𝑉𝑘 contain the first 𝑘 columns of 𝑈̂ and 𝑉 , and Σ̂𝑘 is the top-left 𝑘 × 𝑘 submatrix of Σ̂. Then

min 
rank(𝑋)≤𝑘‖𝐴−𝑋‖2 = ‖𝐴− 𝐴̂𝑘‖2 = 𝜎̂𝑘+1. (2.2)

The Moore-Penrose pseudoinverse of a matrix is the most widely known generalization of the inverse matrix [18, 5.5.2]. Using 
the SVD of 𝐴, we can give its explicit form:

𝐴† = 𝑉 Σ̂†𝑈̂⊤, Σ̂† =
(
Σ̂−1
𝑟

𝟎
𝟎 𝟎

)
. (2.3)

One application of the Moore-Penrose pseudoinverse is to solve the rank-deficient least squares problems [18, §5.5.1]. In the rest part 
of the paper, for any matrix 𝐶 ∈ℝ𝑘×𝑙 , vector 𝑑 ∈ℝ𝑘 and subspace  ⊂ℝ𝑙 , we use {𝑥∈  ∶ 𝑥 ∈ argmin‖𝐶𝑥− 𝑑‖2} to denote the set 
of all 𝑥 ∈  satisfying ‖𝐶𝑦− 𝑑‖2 ≥ ‖𝐶𝑥− 𝑑‖2 for any 𝑦 ∈  .

Theorem 2.3. Let rank(𝐴) = 𝑟 (can be smaller than min{𝑚,𝑛}). Then the rank-deficient least squares problem with a minimum 2-norm

min
𝑥∈ ‖𝑥‖2,  = {𝑥 ∈ℝ𝑛 ∶ 𝑥 ∈ argmin‖𝐴𝑥− 𝑏‖2} (2.4)

has a unique solution

𝑥𝐿𝑆 =𝐴†𝑏 =
𝑟 ∑

𝑖=1 

𝑢̂⊤
𝑖
𝑏

𝜎̂𝑖
𝑣̂𝑖. (2.5)

For linear ill-posed problem with Tikhonov regularization (1.6), the regularized solution has a similar expression to (2.5) but with 
additional filter factors [21, §4.2]:

𝑥𝜆 =
𝑛 ∑

𝑖=1 

𝜎̂2
𝑖

𝜎̂2
𝑖
+ 𝜆

𝑢̂⊤
𝑖
𝑏

𝜎̂𝑖
𝑣̂𝑖, (2.6)

where the regularization parameter 𝜆 should be chosen such that the filter factors 𝑓𝑖 ∶=
𝜎̂2
𝑖

𝜎̂2
𝑖
+𝜆

≈ 1 for those small index 𝑖 corresponding 
to dominant information about 𝑥true and 𝑓𝑖 ≈ 0 for those large index 𝑖 to filter out noisy components. Note that the summation index 
𝑖 runs from 1 to 𝑛, as the matrix 𝐴 for the ill-posed problem does not have a well-defined numerical rank.
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For small-scale matrices, the SVD can be efficiently computed by a variant of QR algorithm [16] or Jacobi rotation procedure 
[9,10]. For large-scale matrices, one commonly used SVD algorithm is based on the Golub-Kahan bidiagonalization (GKB), which 
applies a Lanczos-type iterative procedure to 𝐴 to generate two Krylov subspaces and project 𝐴 to be a small-scale bidiagonal matrix. 
Then the SVD of the reduced bidiagonal matrix is computed to approximate some dominant SVD components of 𝐴 [13]. The GKB 
process is also a standard procedure used in LSQR for iteratively solving large-scale least square problems. At the 𝑘-th step of LSQR, 
it equivalently computes the solution

𝑥𝑘 = min 
𝑥∈𝑘 ‖𝐴𝑥− 𝑏‖2, 𝑘 =𝑘(𝐴⊤𝐴,𝐴⊤𝑏) ∶= span{(𝐴⊤𝐴)𝑖,𝐴⊤𝑏}𝑘−1

𝑖=0 .

The above LS problem can be transformed into a 𝑘-dimensional subproblem using the subspace projection procedure. For large-scale 
linear ill-posed problems, the above approach is very efficient and fruitful for handling the ‖𝑥‖22 regularization term, where an early 
stopping rule should be used to avoid the semi-convergence behavior, meaning that the error ‖𝑥𝑘 − 𝑥true‖2 first decreases and then 
increases as 𝑘 runs from 1 to 𝑛. The hybrid regularization method is another type of iterative method that can stabilize the convergence 
behavior, which usually applies the Tikhonov regularization to the projected subproblem at each iteration; see e.g. [7,27,37,6].

If all the weights in the quadrature rule for the integral in (1.4) are equal, as in the case of the midpoint rule, the vector norm ‖𝑥‖2 provides a reasonable approximation to ‖𝑓‖𝐿2([𝑡1 ,𝑡2]). However, the midpoint rule tends to have lower accuracy, leading to 
higher discretization errors and an increased amplification of solution errors due to the ill-posed nature of the inverse problem. In 
contrast, using quadrature rules with higher accuracy, such as the Simpson’s rule or Gaussian quadrature, results in different weight 
values. In this case, the more accurate approximation to ‖𝑓‖𝐿2([𝑡1 ,𝑡2]) should be ‖𝑥‖𝑀 instead of ‖𝑥‖2, where 𝑀 = diag(𝑤1,… ,𝑤𝑛)
represents the diagonal matrix of weights. In such a scenario, we should consider the Tikhonov regularization problem (1.6) and the 
corresponding iterative regularization methods. To analyze and solve this problem, in the following part, we generalize the SVD to 
the 𝑀 -inner product case and propose corresponding iterative algorithms.

3. The weighted SVD with nonstandard inner-product

In this section, assume 𝐴 ∈ℝ𝑚×𝑛 be a matrix of rank 𝑟 <min{𝑚,𝑛}. Let 𝑀 ∈ℝ𝑛×𝑛 be a symmetric positive definite matrix. It can 
be either diagonal or non-diagonal. This matrix can introduce a new inner product in ℝ𝑛.

Definition 3.1. For any 𝐴 ∈ ℝ𝑚×𝑛, define the linear operator  ∶ (ℝ𝑛, ⟨⋅, ⋅⟩𝑀 ) → (ℝ𝑚, ⟨⋅, ⋅⟩2) as  ∶ 𝑥 ↦ 𝐴𝑥 for 𝑥 ∈ ℝ𝑛 under the 
canonical bases of ℝ𝑛 and ℝ𝑚, where ⟨⋅, ⋅⟩2 is the standard 2-inner product and ⟨𝑥,𝑥′⟩𝑀 ∶= 𝑥⊤𝑀𝑥′ is called the 𝑀 -inner product.

The operator  is bounded since (ℝ𝑛, ⟨⋅, ⋅⟩𝑀 ) and (ℝ𝑚, ⟨⋅, ⋅⟩2) are both finite dimensional Hilbert spaces. Thus, we can definite 
the operator norm of .

Definition 3.2. Define the 𝑀 -weighted norm of 𝐴 as

‖𝐴‖𝑀,2 ∶= ‖‖ ∶= max
𝑥≠𝟎 

‖𝐴𝑥‖2‖𝑥‖𝑀 . (3.1)

Similar to the unitarily invariant property of ‖𝐴‖2, we have the following property for ‖𝐴‖𝑀,2.

Proposition 3.1. Let 𝑈̃ ∈ ℝ𝑚×𝑚 and 𝑉 ∈ ℝ𝑛×𝑛 are 2- and 𝑀 -orthogonal matrices, respectively, i.e. 𝑈̃⊤𝑈̃ = 𝐼𝑚 and 𝑉 ⊤𝑀𝑉 = 𝐼𝑛. Then 
we have

‖𝑈̃⊤𝐴𝑉 ‖2 = ‖𝐴‖𝑀,2 (3.2)

Proof. Since 𝑉 ⊤𝑀𝑉 = 𝐼𝑛 and 𝑀 is positive definite, it follows that 𝑉 is invertible. Thus, we have

‖𝑈̃⊤𝐴𝑉 ‖2 = max
𝑥≠𝟎 

‖𝑈̃⊤𝐴𝑉 𝑥‖2‖𝑥‖2 = max
𝑥≠𝟎 

‖𝑈̃⊤𝐴𝑉 𝑥‖2‖𝑉 𝑥‖𝑀
=max

𝑦≠𝟎 
‖𝑈̃⊤𝐴𝑦‖2‖𝑦‖𝑀 =max

𝑦≠𝟎 
‖𝐴𝑦‖2‖𝑦‖𝑀 (let 𝑦 = 𝑉 𝑥)

= ‖𝐴‖𝑀,2,

where we have used ‖𝑉 𝑥‖2
𝑀

= 𝑥⊤𝑉 ⊤𝑀𝑉 𝑥 = 𝑥⊤𝑥 = ‖𝑥‖22. The proof is completed. □

The following result generates the SVD of a matrix 𝐴, which has a very similar form to (1.1).

Theorem 3.1. Let 𝐴 ∈ℝ𝑚×𝑛, and 𝑀 ∈ℝ𝑛×𝑛 is symmetric positive definite. There exist 2-orthogonal matrix 𝑈 ∈ℝ𝑚×𝑚 and 𝑀 -orthogonal 
matrix 𝑉 ∈ℝ𝑛×𝑛, and diagonal matrix Σ𝑟 = diag(𝜎1,… , 𝜎𝑟) with 𝜎1 ≥⋯ ≥ 𝜎𝑟 > 0, such that
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𝑈⊤𝐴𝑉 = Σ ∶=
(
Σ𝑟 𝟎
𝟎 𝟎

)
, Σ ∈ℝ𝑚×𝑛. (3.3)

Proof. By the definition of ‖𝐴‖𝑀,2, there exist vectors 𝑣1 ∈ ℝ𝑛 and 𝑢1 ∈ ℝ𝑚 such that ‖𝑣1‖𝑀 = ‖𝑢1‖2 = 1 and 𝐴𝑣1 = 𝜎1𝑢1 with 
𝜎1 = ‖𝐴‖𝑀,2. Let 𝑉2 ∈ ℝ𝑛×(𝑛−1) and 𝑈2 ∈ ℝ𝑚×(𝑚−1) such that 𝑉 = (𝑣1, 𝑉2) and 𝑈 = (𝑢1,𝑈2) are 𝑀 - and 2-orthogonal, respectively. 
Then we get

𝑈⊤𝐴𝑉 =

(
𝑢⊤1𝐴𝑣1 𝑢⊤1𝐴𝑉2

𝑈⊤
2 𝐴𝑣1 𝑈⊤

2 𝐴𝑉2

)
=∶

(
𝜎1 𝑥⊤

𝟎 𝐵

)
=∶𝐴1,

where 𝑥 ∈ℝ𝑛−1 and 𝐵 ∈ℝ(𝑚−1)×(𝑛−1). By Lemma 3.1 we have ‖𝐴1‖2 = ‖𝐴‖𝑀,2 = 𝜎1. Let 𝑥̃ = (𝜎1, 𝑥⊤)⊤. It follows that

𝜎21 ≥
‖𝐴1𝑥̃‖22‖𝑥̃‖22 =

‖‖‖‖‖
(
𝜎21 + 𝑥⊤𝑥

𝐵𝑥

)‖‖‖‖‖
2

2

/‖𝑥̃‖22 ≥ ‖𝑥̃‖22 = 𝜎21 + 𝑥⊤𝑥,

which leads to 𝑥 = 𝟎. Therefore, we have 𝑈⊤𝐴𝑉 =
(
𝜎1 𝟎⊤
𝟎 𝐵

)
. Now (3.3) can be obtained by using mathematical induction. Since 

𝑈 and 𝑉 are invertible, it follows that rank(𝐴) = 𝑟 = rank(Σ𝑟). The proof is completed. □

The main difference between the two forms (1.1) and (3.3) is that the right vectors {𝑣𝑖} are 𝑀 -orthonormal. We call (3.3) the 
weighted SVD (WSVD) of 𝐴 with weight matrix 𝑀 . For 𝑀 = 𝐼𝑛, it is the same as the standard SVD. Similar to the standard SVD, 
the WSVD can be used to analyze and solve many problems with a nonstandard 2-norm. Specifically, it can be used to analyze and 
develop efficient algorithms for linear ill-posed problems with the ‖𝑥‖2

𝑀
regularization term.

Note that 𝑉 ⊤𝑀𝑉 = 𝐼𝑛 implies that 𝑉 𝑉 ⊤𝑀𝑉 = 𝑉 . Multiplying 𝑉 −1 from the right-hand side, we get 𝑉 𝑉 ⊤ =𝑀−1. Therefore, 
from (3.3) we get

𝐴 =𝑈

(
Σ𝑟 𝟎
𝟎 𝟎

)
𝑉 ⊤𝑀. (3.4)

From (3.3) and (3.4) we have

𝐴𝑣𝑖 = 𝜎𝑖𝑢𝑖, (3.5)

𝐴⊤𝑢𝑖 = 𝜎𝑖𝑀𝑣𝑖. (3.6)

Also, we have the WSVD expansion form of 𝐴: 𝐴 =
∑𝑟

𝑖=1 𝜎𝑖𝑢𝑖𝑣
⊤
𝑖
𝑀 . Besides, the range space and null space of 𝐴 can be explicitly 

written as

(𝐴) = span{𝑢1,… , 𝑢𝑟},

 (𝐴) = span{𝑣𝑟+1,… , 𝑣𝑛},

where {𝑣𝑟+1,… , 𝑣𝑛} is an 𝑀 -orthonormal basis of  (𝐴).
Using the WSVD, the Eckhart-Young-Mirsky theorem for low-rank approximation of a matrix under the ‖ ⋅ ‖𝑀,2 norm has the 

following form.

Theorem 3.2. For any integer 1≤ 𝑘 < 𝑟, we have

min
X≤𝑘 ‖𝐴−𝑋‖𝑀,2 ≥ 𝜎𝑘+1, (3.7)

where the minimum can be achieved if 𝑋 =𝐴𝑘 ∶=
∑𝑘

𝑖=1 𝜎𝑖𝑢𝑖𝑣
⊤
𝑖
𝑀 .

Proof. First, if 𝑋 =𝐴𝑘 ∶=
∑𝑘

𝑖=1 𝜎𝑖𝑢𝑖𝑣
⊤
𝑖
𝑀 , we have rank(𝑋) = 𝑘, and by Proposition 3.1 we have

‖𝐴−𝑋‖𝑀,2 = ‖𝑈⊤(𝐴−𝑋)𝑉 ‖2 =
‖‖‖‖‖‖‖‖‖‖‖
𝑈⊤𝑈

⎛⎜⎜⎜⎜⎜⎝

𝟎
𝜎𝑘+1

⋱
𝜎𝑟

𝟎

⎞⎟⎟⎟⎟⎟⎠
𝑉 ⊤𝑀𝑉

‖‖‖‖‖‖‖‖‖‖‖2
= 𝜎𝑘+1.

Thus, we only need to prove ‖𝐴−𝑋‖𝑀,2 ≥ 𝜎𝑘+1 for any 𝑋 ∈ℝ𝑚×𝑛 with rank(𝑋) = 𝑘. For such 𝑋 we have dim( (𝑋)) = 𝑛−𝑘, thereby 
we can find 𝑀 -orthonormal vectors {𝑤1,… ,𝑤𝑛−𝑘} such that  (𝑋) = span{𝑤1,… ,𝑤𝑛−𝑘}. Notice that  (𝑋) ∩ span{𝑣1,… , 𝑣𝑘+1} ≠
{𝟎} since the sum of dimensions of these two subspaces is 𝑛 + 1. Let 𝑧 be a nonzero vector in the intersection of the above two 
subspaces and ‖𝑧‖𝑀 = 1. Using the WSVD of 𝐴, we get
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𝐴𝑧 =
𝑟 ∑

𝑖=1 
𝜎𝑖𝑢𝑖(𝑣⊤𝑖 𝑀𝑧) =

𝑘+1∑
𝑖=1 

𝜎𝑖𝑢𝑖(𝑣⊤𝑖 𝑀𝑧),

since 𝑧 is 𝑀 -orthogonal to 𝑣𝑘+2,… , 𝑣𝑛. It follows that

‖𝐴−𝑋‖2
𝑀,2 ≥

‖(𝐴−𝑋)𝑧‖22‖𝑧‖2
𝑀

= ‖𝐴𝑧‖22 = 𝑘+1∑
𝑖=1 

𝜎2
𝑖
(𝑣⊤

𝑖
𝑀𝑧)2 ≥ 𝜎2

𝑘+1

𝑘+1∑
𝑖=1 

(𝑣⊤
𝑖
𝑀𝑧)2.

Since ‖𝑧‖2
𝑀

= 𝑧⊤𝑀𝑧 = 𝑧⊤𝑀𝑉 𝑉 ⊤𝑀𝑧 = ‖𝑉 ⊤𝑀𝑧‖22, where we used 𝑉 𝑉 ⊤ =𝑀−1, we have

𝑘+1∑
𝑖=1 

(𝑣⊤
𝑖
𝑀𝑧)2 =

𝑛 ∑
𝑖=1 

(𝑣⊤
𝑖
𝑀𝑧)2 = ‖𝑉 ⊤𝑀𝑧‖22 = ‖𝑧‖2

𝑀
= 1.

We finally obtain ‖𝐴−𝑋‖𝑀,2 ≥ 𝜎𝑘+1. □

For the rank-deficient least squares problem, we can write the solution set by using the WSVD, which is convenient to find the 
unique minimum ‖ ⋅ ‖𝑀 solution.

Theorem 3.3. For the linear least squares problems min𝑥∈ℝ𝑛 ‖𝐴𝑥− 𝑏‖2, the set of all solutions is

 =
𝑟 ∑

𝑖=1 

𝑢⊤
𝑖
𝑏

𝜎𝑖
𝑣𝑖 + span{𝑣𝑟+1,… , 𝑣𝑛}, (3.8)

and the unique solution to

min
𝑥∈ ‖𝑥‖𝑀,  = {𝑥 ∈ℝ𝑛 ∶ 𝑥 ∈ argmin‖𝐴𝑥− 𝑏‖2} (3.9)

is

𝑥∗ =
𝑟 ∑

𝑖=1 

𝑢⊤
𝑖
𝑏

𝜎𝑖
𝑣𝑖 (3.10)

Proof. Write 𝑈 and 𝑉 as 𝑈 = (𝑈𝑟,𝑈𝑟,⟂) and 𝑉 = (𝑉𝑟,𝑉𝑟,⟂). Using the WSVD of 𝐴, we have

‖𝐴𝑥− 𝑏‖22 = ‖‖‖‖‖‖𝑈
(
Σ𝑟 𝟎
𝟎 𝟎

)(
𝑉 ⊤
𝑟

𝑉 ⊤
𝑟,⟂

)
𝑀𝑥− 𝑏

‖‖‖‖‖‖
2

2

=
‖‖‖‖‖‖
(
Σ𝑟𝑉

⊤
𝑟
𝑀𝑥

𝟎

)
−

(
𝑈⊤
𝑟
𝑏

𝑈⊤
𝑟,⟂𝑏

)‖‖‖‖‖‖
2

2

= ‖Σ𝑟𝑉
⊤
𝑟
𝑀𝑥−𝑈⊤

𝑟
𝑏‖22 + ‖𝑈⊤

𝑟,⟂𝑏‖22.
Therefore, the minimizers of min𝑥∈ℝ𝑛 ‖𝐴𝑥− 𝑏‖2 are the solutions to Σ𝑟𝑉

⊤
𝑟
𝑀𝑥 = 𝑈⊤

𝑟
𝑏, which is equivalent to 𝑉 ⊤

𝑟
𝑀𝑥 = Σ−1

𝑟
𝑈⊤
𝑟
𝑏. An 

obvious solution to the above equation is 𝑥∗ = 𝑉𝑟Σ−1
𝑟
𝑈⊤
𝑟
𝑏 =

∑𝑟

𝑖=1
𝑢⊤
𝑖
𝑏

𝜎𝑖
𝑣𝑖. Since  (𝑉 ⊤

𝑟
𝑀) = span{𝑣𝑟+1,… , 𝑣𝑛}, we have the expression 

of  as (3.8).
On the other hand, for any 𝑥 ∈  such that 𝑥 = 𝑥∗ +

∑𝑛

𝑟+1 𝛾𝑖𝑣𝑖, since 𝑣𝑖 are mutual 𝑀 -orthogonal, we have

‖𝑥‖2
𝑀

= ‖𝑥∗‖2𝑀 +
𝑛 ∑

𝑖=𝑟+1
𝛾2
𝑖
≥ ‖𝑥∗‖2𝑀,

where the equality on the right holds if and only if 𝛾𝑟+1 =⋯ = 𝛾𝑛 = 0. Therefore (3.9) has the unique solution 𝑥∗. □

If we let 𝐴†𝑀 = 𝑉 Σ†𝑈⊤, where Σ† ∶=
(
Σ−1
𝑟

𝟎
𝟎 𝟎

)
∈ℝ𝑛×𝑚. Then we can express 𝑥∗ as 𝑥∗ =𝐴†𝑀 𝑏. This is a similar expression to the 

smallest 2-norm solution to min𝑥∈ℝ𝑛 ‖𝐴𝑥−𝑏‖2. But unfortunately, 𝐴†𝑀 is not a real pseudoinverse of a matrix since (𝐴𝐴†𝑀 )⊤ ≠𝐴𝐴†𝑀 . 
Thus, we do not discuss it anymore.

4. Iterative algorithm for the WSVD and applications

The WSVD of 𝐴 is actually the singular value expansion of the linear compact operator  ∶ (ℝ𝑛, ⟨⋅, ⋅⟩𝑀 )→ (ℝ𝑚, ⟨⋅, ⋅⟩2) that has a 
finite rank. This motivates us to apply the GKB process to  to approximate several dominant WSVD components of 𝐴; see [5] for 
the GKB process for compact linear operators.
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Starting from a nonzero vector 𝑏 ∈ℝ𝑚,1 the GKB process proceeds based on the following recursive relations:

𝛽1𝑝1 = 𝑏, (4.1)

𝛼𝑖𝑞𝑖 =∗𝑝𝑖 − 𝛽𝑖𝑞𝑖−1, (4.2)

𝛽𝑖+1𝑝𝑖+1 =𝑞𝑖 − 𝛼𝑖𝑝𝑖, (4.3)

where ∗ is the adjoint of . The iteration proceeds as 𝑖 = 1,2,… , and we set 𝑞0 ∶= 𝟎. From the definition of  we have 𝑞𝑖 =𝐴𝑞𝑖. 
In order to compute ∗, we use the basic relation

⟨𝑥, 𝑦⟩2 = ⟨𝑥,∗𝑦⟩𝑀
which is equivalent to (𝐴𝑥)⊤𝑦 = 𝑥⊤∗𝑀𝑦 for any vectors 𝑥 ∈ℝ𝑛 and 𝑦∈ℝ𝑚. It follows that ∗ =𝑀−1𝐴𝑇 . Therefore, we obtain the 
GKB process of ∗, as summarized in Algorithm 1. We name it as the weighted GKB process with weight matrix 𝑀 .

Algorithm 1 The 𝑘-step weighted GKB (WGKB).
Input: Matrix 𝐴 ∈ℝ𝑚×𝑛 , positive definite 𝑀 ∈ℝ𝑛×𝑛 , nonzero 𝑏∈ℝ𝑚

Output: {𝛼𝑖, 𝛽𝑖}𝑘+1𝑖=1 , {𝑝𝑖, 𝑞𝑖}𝑘+1𝑖=1
Let 𝛽1 = ‖𝑏‖2 , 𝑝1 = 𝑏∕𝛽1
Compute 𝑠̄ =𝐴⊤𝑝1 , 𝑠 =𝑀−1 𝑠̄

Compute 𝛼1 = (𝑠⊤𝑠̄)1∕2 , 𝑞1 = 𝑠∕𝛼1
for 𝑖 = 1,2,… , 𝑘 do

𝑟 =𝐴𝑞𝑖 − 𝛼𝑖𝑝𝑖
𝛽𝑖+1 = ‖𝑟‖, 𝑝𝑖+1 = 𝑟∕𝛽𝑖+1
𝑠̄ =𝐴⊤𝑝𝑖+1 − 𝛽𝑖+1𝑀𝑞𝑖 , 𝑠 =𝑀−1 𝑠̄

𝛼𝑖+1 = (𝑠⊤𝑠̄)1∕2 , 𝑞𝑖+1 = 𝑠∕𝛼𝑖+1
end for

Using the property of GKB for the compact operator , before the WGKB reaches the termination step, that is, 𝑘𝑡 ∶= max𝑖{𝛼𝑖𝛽𝑖 >
0}, the 𝑘-step WGKB process generates two groups of vectors {𝑝1,… , 𝑝𝑘+1} and {𝑞1,… , 𝑞𝑘+1} that are 2- and 𝑀 -orthornormal, 
respectively. If we let 𝑃𝑘+1 = (𝑝1,… , 𝑝𝑘+1), 𝑄𝑘 = (𝑝1,… , 𝑞𝑘) and

𝐵𝑘 =

⎛⎜⎜⎜⎜⎜⎝

𝛼1
𝛽2 𝛼2

𝛽3 ⋱
⋱ 𝛼𝑘

𝛽𝑘+1

⎞⎟⎟⎟⎟⎟⎠
∈ℝ(𝑘+1)×𝑘, (4.4)

then we have

𝐴𝑄𝑘 = 𝑃𝑘+1𝐵𝑘, (4.5)

𝑀−1𝐴⊤𝑃𝑘+1 =𝑄𝑘𝐵
⊤
𝑘
+ 𝛼𝑘+1𝑞𝑘𝑒

⊤
𝑘+1, (4.6)

where 𝑒𝑘+1 is the (𝑘+ 1)-th column of 𝐼𝑘+1. Therefore, 𝐵𝑘 is the projection of 𝐴 onto subspaces span{𝑃𝑘+1} and span{𝑄𝑘}.
We can expect to approximate several dominant WSVD components of 𝐴 by the SVD of 𝐵𝑘. Let the compact SVD of 𝐵𝑘 be

𝐵𝑘 = 𝑌𝑘Θ𝑘𝐻
⊤
𝑘
, Θ𝑘 = diag

(
𝜃
(𝑘)
1 ,… , 𝜃

(𝑘)
𝑘

)
, 𝜃

(𝑘)
𝑖

>⋯ > 𝜃
(𝑘)
𝑘

> 0, (4.7)

where 𝑌𝑘 =
(
𝑦
(𝑘)
1 ,… , 𝑦

(𝑘)
𝑘

)
∈ ℝ(𝑘+1)×𝑘 and 𝐻𝑘 =

(
ℎ
(𝑘)
1 ,… , ℎ

(𝑘)
𝑘

)
∈ ℝ𝑘×𝑘 are two orthornormal matrices. Then the approximation to 

the WSVD triplet 
(
𝜎𝑖, 𝑢𝑖, 𝑣𝑖

)
is 

(
𝜎̄
(𝑘)
𝑖

, 𝑢̄
(𝑘)
𝑖
, 𝑣̄

(𝑘)
𝑖

)
∶=

(
𝜃
(𝑘)
𝑖

, 𝑃𝑘+1𝑦
(𝑘)
𝑖
,𝑄𝑘ℎ

(𝑘)
𝑖

)
.

Proposition 4.1. The approximated WSVD triplet based on WGKB satisfies

𝐴𝑣̄
(𝑘)
𝑖

− 𝜎̄
(𝑘)
𝑖

𝑢̄
(𝑘)
𝑖

= 0, (4.8)

𝐴⊤𝑢̄
(𝑘)
𝑖

− 𝜎̄
(𝑘)
𝑖

𝑀𝑣̄
(𝑘)
𝑖

= 𝛼𝑘+1𝑀𝑞𝑘+1𝑒
⊤
𝑘+1. (4.9)

Proof. These two relations can be verified by directly using (4.5) and (4.6):

𝐴𝑣̄
(𝑘)
𝑖

− 𝜎̄
(𝑘)
𝑖

𝑢̄
(𝑘)
𝑖

=𝐴𝑄𝑘ℎ
(𝑘)
𝑖

− 𝜃
(𝑘)
𝑖

𝑃𝑘+1𝑦
(𝑘)
𝑖

= 𝑃𝑘+1

(
𝐵𝑘ℎ

(𝑘)
𝑖

− 𝜃
(𝑘)
𝑖

𝑦
(𝑘)
𝑖

)
= 0

1 For the GKB process used in LSQR, it usually uses the right-hand side 𝑏 as the starting vector. However, for using the GKB process to calculate the SVD or WSVD, 
it can use any nonzero vector in ℝ𝑚 as a starting vector.
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and

𝐴⊤𝑢̄
(𝑘)
𝑖

− 𝜎̄
(𝑘)
𝑖

𝑀𝑣̄
(𝑘)
𝑖

=𝐴⊤𝑃𝑘+1𝑦
(𝑘)
𝑖

− 𝜃
(𝑘)
𝑖

𝑀𝑄𝑘ℎ
(𝑘)
𝑖

=𝑀
(
𝑄𝑘𝐵

⊤
𝑘
+ 𝛼𝑘+1𝑞𝑘𝑒

⊤
𝑘+1

)
𝑦
(𝑘)
𝑖

− 𝜃
(𝑘)
𝑖

𝑀𝑄𝑘ℎ
(𝑘)
𝑖

=𝑀𝑄𝑘(𝐵⊤
𝑘
𝑦
(𝑘)
𝑖

− 𝜃
(𝑘)
𝑖

ℎ
(𝑘)
𝑖
) + 𝛼𝑘+1𝑀𝑞𝑘𝑒

⊤
𝑘+1𝑦

(𝑘)
𝑖

= 𝛼𝑘+1𝑀𝑞𝑘𝑒
⊤
𝑘+1𝑦

(𝑘)
𝑖
.

The proof is completed. □

Therefore, the triplet 
(
𝜎̄
(𝑘)
𝑖

, 𝑢̄
(𝑘)
𝑖
, 𝑣̄

(𝑘)
𝑖

)
can be accepted as a satisfied WSVD triplet at the iteration that |||𝛼𝑘+1𝑞𝑘𝑒⊤𝑘+1𝑦(𝑘)𝑖

||| is sufficiently 
small. This easily computed quantity can be used as a stopping criterion for iteratively computing WSVD triplets.

To solve the large-scale least square problem (3.9), one method is to transform it to the standard one:

min
𝑧∈ ‖𝑧‖2,  = {𝑧 ∈ℝ𝑛 ∶ 𝑧 ∈ argmin‖𝐴𝐿−1

𝑀
𝑧− 𝑏‖2} (4.10)

by the substitution 𝑧 =𝐿𝑀𝑥, where 𝐿𝑀 is the Cholesky factor of 𝑀 , i.e. 𝑀 =𝐿⊤
𝑀
𝐿𝑀 , and then use the LSQR algorithm to solve it. 

However, this transformation needs to compute the Cholesky factorization of 𝑀 in advance, which can be very costly for large-scale 
𝑀 . Noticing that the least square problem (3.9) can be obtained by the WSVD, that is 𝑥∗ =𝐴†𝑀 𝑏, we can expect to iteratively compute 
𝑥∗ based on the WGKB process of 𝐴 with starting vector 𝑏. Note from (4.1) that 𝛽𝑃𝑘+1𝑒1 = 𝑏, where 𝑒1 is the first column of 𝐼𝑘+1. If 
the WGKB process does not terminate until the 𝑘-th step, i.e. 𝑘 < 𝑘𝑡, then 𝐵𝑘 has full column rank. In this case, we seek a solution to 
(3.9) in the subspace span{𝑄𝑘}. By letting 𝑥 =𝑄𝑘𝑦 with 𝑦 ∈ℝ𝑘, we have

min 
𝑥∈span{𝑄𝑘}

‖𝐴𝑥− 𝑏‖2 = min 
𝑦∈ℝ𝑛

‖𝐴𝑄𝑘𝑦− 𝑏‖2 = min 
𝑦∈ℝ𝑛

‖𝑃𝑘+1𝐵𝑘𝑦− 𝛽𝑃𝑘+1𝑒1‖2 = min 
𝑦∈ℝ𝑛

‖𝐵𝑘𝑦− 𝛽𝑒1‖2
and ‖𝑥‖𝑀 = ‖𝑄𝑘𝑦‖𝑀 = ‖𝑦‖2. Therefore, the problem (3.9) with 𝑥 ∈ span{𝑄𝑘} becomes

min 
𝑦∈𝑘

‖𝑦‖2, 𝑘 = {𝑦 ∈ℝ𝑘 ∶ 𝑦 ∈ argmin‖𝐵𝑘𝑦− 𝛽𝑒1‖2} (4.11)

This is a standard linear least squares problem with minimum 2-norm, which has the unique solution 𝑦𝑘 = 𝐵
†
𝑘
𝛽𝑒1. Therefore, at the 

𝑘-th iteration, we compute the iterative approximation to (3.9):

𝑥𝑘 =𝑄𝑘𝑦𝑘, 𝑦𝑘 =𝐵
†
𝑘
𝛽𝑒1. (4.12)

The above procedure is similar to the LSQR algorithm for standard 2-norm least squares problems. Moreover, the bidiagonal 
structure of 𝐵𝑘 allows us to design a recursive relation to update 𝑥𝑘 step by step without explicitly computing 𝐵†

𝑘
𝛽𝑒1 at each iteration; 

see [35, Section 4.1] for the similar recursive relation in LSQR. We summarized the iterative algorithm for iteratively solving (3.9)
in Algorithm 2, which is named the weighted LSQR (WLSQR) algorithm.

Algorithm 2 Weighted LSQR (WLSQR).
Input: Matrix 𝐴 ∈ℝ𝑚×𝑛 , positive definite 𝑀 ∈ℝ𝑛×𝑛 , vector 𝑏∈ℝ𝑚

Output: Approximate solution to (3.9): 𝑥𝑘
Compute 𝛽1𝑝1 = 𝑏, 𝛼1𝑞1 =𝑀−1𝐴𝑇 𝑞1 ,
Set 𝑥0 = 𝟎, 𝑤1 = 𝑞1 , 𝜙̄1 = 𝛽1 , 𝜌̄1 = 𝛼1
for 𝑖 = 1,2,… until convergence, do

(Applying the WGKB process)

𝛽𝑖+1𝑝𝑖+1 =𝐴𝑞𝑖 − 𝛼𝑖𝑝𝑖
𝛼𝑖+1𝑞𝑖+1 =𝑀−1𝐴⊤𝑝𝑖+1 − 𝛽𝑖+1𝑞𝑖
(Applying the Givens QR factorization to 𝐵𝑘)

𝜌𝑖 = (𝜌̄2
𝑖
+ 𝛽2

𝑖+1)
1∕2

𝑐𝑖 = 𝜌̄𝑖∕𝜌𝑖
𝑠𝑖 = 𝛽𝑖+1∕𝜌𝑖
𝜃𝑖+1 = 𝑠𝑖𝛼𝑖+1
𝜌̄𝑖+1 = −𝑐𝑖𝛼𝑖+1
𝜙𝑖 = 𝑐𝑖𝜙̄𝑖

𝜙̄𝑖+1 = 𝑠𝑖𝜙̄𝑖

(Updating the solution)

𝑥𝑖 = 𝑥𝑖−1 + (𝜙𝑖∕𝜌𝑖)𝑤𝑖

𝑤𝑖+1 = 𝑣𝑖+1 − (𝜃𝑖+1∕𝜌𝑖)𝑤𝑖

end for

The following result shows that the WLSQR algorithm approaches the exact solution to (3.9) as the algorithm proceeds.

Theorem 4.1. If the WGKB process terminates at step 𝑘𝑡 =max𝑖{𝛼𝑖𝛽𝑖 > 0}, then the iterative solution 𝑥𝑘𝑡 is the exact solution to (3.9).
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Proof. By Theorem 3.3, a vector 𝑥 ∈ℝ𝑛 is the unique solution to (3.9) if and only if

𝐴𝑥− 𝑏 ⟂(𝐴), 𝑥 ⟂𝑀 span{𝑣𝑟+1,… , 𝑣𝑛}.

Using the property of the GKB process of , the subspace span{𝑄𝑘} can be expressed as the Krylov subspace

span{𝑄𝑘} =𝑘(∗,∗𝑏) = span{(∗)𝑖∗𝑏}𝑘−1
𝑖=0 = span{(𝑀−1𝐴⊤𝐴)𝑖𝑀−1𝐴⊤𝑏}𝑘−1

𝑖=0 .

For any 𝑘 ≤ 𝑘𝑡, since 𝑥𝑘 =𝑄𝑘𝑦𝑘, it follows

𝑥𝑘 ∈ span{(𝑀−1𝐴⊤𝐴)𝑖𝑀−1𝐴⊤𝑏}𝑘−1
𝑖=0 ⊆(𝑀−1𝐴⊤) =𝑀−1 (𝐴)⟂.

Using the WSVD of 𝐴, we have  (𝐴) = span{𝑣𝑟+1,… , 𝑣𝑛}. For any 𝑣∈ℝ𝑛, it follows that

𝑣 ∈𝑀−1 (𝐴)⟂ ⇔𝑀𝑣 ∈ (𝐴)⟂ ⇔ 𝑣⊤𝑀𝑣𝑖 = 0, 𝑖 = 𝑟+ 1,… , 𝑛,

which leads to 𝑀−1 (𝐴)⟂ = span{𝑣1,… , 𝑣𝑟}. Therefore, we get 𝑥𝑘 ∈ span{𝑣1,… , 𝑣𝑟} and thereby 𝑥𝑘 ⟂𝑀 span{𝑣𝑟+1,… , 𝑣𝑛}.
To prove 𝐴𝑥𝑘𝑡 − 𝑏⟂(𝐴), we only need to show 𝐴⊤(𝐴𝑥𝑘𝑡 − 𝑏) = 𝟎. By (4.2) and (4.3), we have

𝐴⊤(𝐴𝑥𝑘𝑡 − 𝑏) =𝐴⊤(𝐴𝑄𝑘𝑡
𝑦𝑘𝑡

− 𝑃𝑘𝑡+1𝛽1𝑒1)

=𝐴⊤𝑃𝑘𝑡+1(𝐵𝑘𝑡
𝑦𝑘𝑡

− 𝛽1𝑒1)

=𝑀(𝑄𝑘𝑡
𝐵⊤
𝑘𝑡
+ 𝛼𝑘𝑡+1𝑞𝑘𝑡+1𝑒

⊤
𝑘+1)(𝐵𝑘𝑡

𝑦𝑘𝑡
− 𝛽1𝑒1)

=𝑀

[
𝑄𝑘𝑡

(𝐵⊤
𝑘𝑡
𝐵𝑘𝑡

𝑦𝑘𝑡
−𝐵⊤

𝑘𝑡
𝛽1𝑒1) + 𝛼𝑘𝑡+1𝛽𝑘𝑡+1𝑞𝑘+1𝑒

⊤
𝑘𝑡
𝑦𝑘𝑡

]
= 𝛼𝑘𝑡+1𝛽𝑘𝑡+1𝑀𝑞𝑘𝑡+1𝑒

⊤
𝑘𝑡
𝑦𝑘𝑡

,

where we used 𝐵⊤
𝑘𝑡
𝐵𝑘𝑡

𝑦𝑘𝑡
= 𝐵⊤

𝑘𝑡
𝛽1𝑒1 since 𝑦𝑘𝑡 satisfies the normal equation of min𝑦 ‖𝐵𝑘𝑡

𝑦 − 𝛽1𝑒1‖2. Since WGKB terminates at 𝑘𝑡, 
which means that 𝛼𝑘𝑡+1𝛽𝑘𝑡+1 = 0, we have 𝐴⊤(𝐴𝑥𝑘𝑡 − 𝑏) = 𝟎. □

The following result shows that the WLSQR has the same effect as first transforming the original problem to (4.10) and then 
solving it, but it achieves this without the need for an explicit transformation.

Theorem 4.2. Let the Cholesky factorization of 𝑀 be 𝑀 =𝐿⊤
𝑀
𝐿𝑀 . Then the 𝑘-th iterative solution of WLSQR is 𝑥𝑘 =𝐿−1

𝑀
𝑧𝑘, where 𝑧𝑘 is 

the 𝑘-th LSQR solution of min𝑧∈ℝ𝑛 ‖𝐴𝐿−1
𝑀
𝑧− 𝑏‖2.

Proof. The 𝑘-th LSQR solution of min𝑧∈ℝ𝑛 ‖𝐴𝐿−1
𝑀
𝑧− 𝑏‖2 is the solution of the subspace constrained least squares problem

min 
𝑧∈̄𝑘

‖𝐴𝐿−1
𝑀
𝑧− 𝑏‖2, ̄𝑘 =𝑘

(
(𝐴𝐿−1

𝑀
)⊤(𝐴𝐿−1

𝑀
), (𝐴𝐿−1

𝑀
)⊤𝑏

)
,

where

𝑘

(
(𝐴𝐿−1

𝑀
)⊤(𝐴𝐿−1

𝑀
), (𝐴𝐿−1

𝑀
)⊤𝑏

)
= span

{
(𝐿−⊤

𝑀
𝐴⊤𝐴𝐿−1

𝑀
)𝑖𝐿−⊤

𝑀
𝐴⊤𝑏

}𝑘−1
𝑖=0 =𝐿−⊤

𝑀
span

{
(𝐴⊤𝐴𝑀−1)𝑖𝐴⊤𝑏

}𝑘−1
𝑖=0 .

Therefore, 𝑥𝑘 =𝐿−1
𝑀
𝑧𝑘 is the solution of the problem min

𝑥∈𝐿−1
𝑀

̄𝑘 ‖𝐴𝑥− 𝑏‖2. From the proof of Theorem 4.1, we have

𝐿−1
𝑀
̄𝑘 =𝑀−1span

{
(𝐴⊤𝐴𝑀−1)𝑖𝐴⊤𝑏

}𝑘−1
𝑖=0 = span{(𝑀−1𝐴⊤𝐴)𝑖𝑀−1𝐴⊤𝑏}𝑘−1

𝑖=0 =𝑘(∗,∗𝑏),

which is the 𝑘-th solution subspace 𝑘 generated by WGKB. By writing any vector in 𝑘 as 𝑥 =𝑄𝑘𝑦 with 𝑦 ∈ℝ𝑘, it is easy to verify 
that min𝑥∈𝑘 ‖𝐴𝑥− 𝑏‖2 has the unique solution. It follows that 𝑥𝑘 is the 𝑘-th WLSQR solution. □

5. Using the WSVD to analyze and solve linear ill-posed problems

For the Tikhonov regularization (1.7) with the ‖𝑥‖2
𝑀

regularization term, if we have the Cholesky factorization 𝑀 =𝐿⊤
𝑀
𝐿𝑀 , this 

problem can be transformed into the standard-form Tikhonov regularization problems min𝑥̄∈ℝ𝑛{‖𝐴𝐿−1
𝑀
𝑥̄ − 𝑏‖22 + 𝜆‖𝑥̄‖22} by letting 

𝑥̄ =𝐿𝑀𝑥. Without the Cholesky factorization of 𝑀 , we can write its solution explicitly using the WSVD of 𝐴.

Theorem 5.1. The solution to the Tikhonov regularization (1.7) can be written as

𝑥𝜆 =
𝑟 ∑

𝑖=1 

𝜎2
𝑖

𝜎2
𝑖
+ 𝜆

𝑢⊤
𝑖
𝑏

𝜎𝑖
𝑣𝑖. (5.1)
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Proof. Since 𝑉 is an 𝑀 -orthogonal matrix, we can let 𝑥 = 𝑉 𝑦 for any 𝑥 ∈ℝ𝑛 where 𝑦 ∈ℝ𝑛. Using relations 𝐴𝑉 =𝑈Σ and 𝑉 ⊤𝑀𝑉 =
𝐼𝑛 in the WSVD of 𝐴, (1.7) becomes

min 
𝑦∈ℝ𝑛

{‖𝑈Σ𝑦− 𝑏‖22 + 𝜆‖𝑦‖22}.
The normal equation of this problem is[

(𝑈Σ)⊤(𝑈Σ) + 𝜆𝐼𝑛
]
𝑦 = (𝑈Σ)⊤𝑏 ⇔ (Σ⊤Σ+ 𝜆𝐼𝑛)𝑦 = Σ⊤𝑈⊤𝑏,

which leads to the unique solution to (1.7) as (5.1).

𝑥𝜆 = 𝑉 (Σ⊤Σ+ 𝜆𝐼𝑛)−1Σ⊤𝑈⊤𝑏 =
𝑟 ∑

𝑖=1 

𝜎2
𝑖

𝜎2
𝑖
+ 𝜆

𝑢⊤
𝑖
𝑏

𝜎𝑖
𝑣𝑖.

The proof is completed. □

The above expression of 𝑥𝜆 is similar to (2.6), where 𝜆 should be chosen properly to filter out the noisy components.

5.1. Iterative regularization by subspace projection

To avoid choosing a proper regularization parameter in advance for the Tikhonov regularization, we consider the subspace projec

tion regularization (SPR) method following the idea in [12, §3.3], which can be formed as

min 
𝑥∈̄𝑘

‖𝑥‖𝑀, ̄𝑘 = {𝑥 ∈ 𝑘 ∶ 𝑥 ∈ argmin‖𝐴𝑥− 𝑏‖2}. (5.2)

Remark 5.1. The above SPR method is a generalization of the iterative regularization method corresponding to the ‖𝑥‖22 regulariza
tion term. For example, the LSQR method with early stopping can be written as

min 
𝑥∈̄𝑘

‖𝑥‖2, ̄𝑘 = {𝑥 ∈ 𝑘 ∶ 𝑥 ∈ argmin‖𝐴𝑥− 𝑏‖2}, 𝑘 =𝑘(𝐴⊤𝐴,𝐴⊤𝑏).

The success of the SPR method highly depends on the choice of solution subspaces 𝑘, which should be elaborately constructed to 
incorporate the prior information about the desired solution encoded by the regularizer ‖𝑥‖2

𝑀
. For the LSQR method, the solution 

subspaces 𝑘(𝐴⊤𝐴,𝐴⊤𝑏) can only deal with the ‖𝑥‖22 regularization term. This motivates us to develop a new iterative process to 
construct solution subspaces to incorporate prior information encoded by ‖𝑥‖2

𝑀
.

Remark 5.2. For any choice of a 𝑘-dimensional 𝑘, there exists a unique solution to (5.2). To see it, let 𝑥 =𝑊𝑘𝑦 with 𝑦 ∈ ℝ𝑘 be 
any vector in 𝑘, where 𝑊𝑘 ∈ℝ𝑛×𝑘 whose columns are 𝑀 -orthonormal and span 𝑘. Then the solution to (5.2) satisfies 𝑥𝑘 =𝑊𝑘𝑦𝑘, 
where 𝑦𝑘 is the solution to

min 
𝑦∈𝑘

‖𝑦‖2, 𝑘 = {𝑦 ∈ℝ𝑘 ∶ 𝑦 ∈ argmin‖𝐴𝑊𝑘𝑦− 𝑏‖2}.
This problem has a unique solution 𝑦𝑘 = (𝐴𝑊𝑘)†𝑏. Therefore, there exists a unique solution to (5.2).

Using the WSVD of 𝐴, if we choose the 𝑘-th solution subspace in (5.2) as 𝑘 = span{𝑣1,… , 𝑣𝑘}, then the solution to (5.2) is 
𝑥𝑘 = 𝑉𝑘𝑦𝑘, where 𝑦𝑘 is the solution to

min 
𝑦∈𝑘

‖𝑦‖2, 𝑘 = {𝑦 ∈ℝ𝑘 ∶ 𝑦 ∈ argmin‖𝑈𝑘Σ𝑘𝑦− 𝑏‖2}.
Note that 𝑈𝑘Σ𝑘 has full column rank for 1 ≤ 𝑘 ≤ 𝑟. Therefore, 𝑘 has only one element, which is 𝑦𝑘 = Σ−1

𝑘
𝑈⊤
𝑘
𝑏, thereby

𝑥𝑘 = 𝑉𝑘Σ−1
𝑘
𝑈⊤
𝑘
𝑏 =

𝑘 ∑
𝑖=1 

𝑢⊤
𝑖
𝑏

𝜎𝑖
𝑣𝑖.

Comparing this result with Theorem 3.3, we find that 𝑥𝑘 can be obtained by truncating the first 𝑘 components of 𝑥∗. Thus, we name 
this form of 𝑥𝑘 as the truncated WSVD (TWSVD) solution. By truncating the above solution at a proper 𝑘, the TWSVD solution can 
capture the main information corresponding to the dominant right weighted singular vectors 𝑣𝑖 while discarding the highly amplified 
noisy vectors corresponding to others.

From the above investigation, those dominant 𝑣𝑖 play an important role in the regularized solution, since they contain the desirable 
information about 𝑥 encoded by the regularizer ‖𝑥‖2

𝑀
. As has been shown that WGKB can be used to approximate the WSVD triplets 

of 𝐴, this motivates us to design iterative regularization algorithms based on WGKB. This can be achieved by setting the 𝑘-th solution 
subspace as 𝑘 = span{𝑄𝑘}. Following the same procedure for deriving WLSQR, the problem (5.2) becomes
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min 
𝑦∈𝑘

‖𝑦‖2, 𝑘 = {𝑦 ∈ℝ𝑘 ∶ 𝑦 ∈ argmin‖𝐵𝑘𝑦− 𝛽1𝑒1‖2}, (5.3)

which has the solution given by (4.12). Therefore, the SPR method with 𝑘 = span{𝑄𝑘} is actually the WLSQR method. One important 
difference from solving the ordinary least squares problem is that here the iteration should be early stopped. This can be seen from 
Theorem 4.1 since the algorithm eventually converges to the naive solution to (3.9). This is the typical semi-convergence behavior 
for SPR methods: as the iteration proceeds, the iterative solution first gradually approximates to 𝑥true , then the solution will deviate 
far from 𝑥true and eventually converges to 𝐴†𝑀 𝑏 [12, §3.3]. This is because the solution subspace will contain more and more 
noisy components as it gradually expands. The iteration at which the corresponding solution has the smallest error is called the 
semi-convergence point. Note that the iteration number 𝑘 in SPR plays a similar role as the regularization parameter in Tikhonov 
regularization. Here we adapt two criteria for choosing regularization parameters to estimate the semi-convergence point.

Early stopping rules

1. Discrepancy principle (DP). For the Gaussian white noise 𝑒, if an estimate of ‖𝑒‖2 is known, one criterion for determining the 
early stopping iteration is the DP, which states that the discrepancy between the data and predicted output, which is ‖𝐴𝑥𝑘 − 𝑏‖2, 
should be of the order of ‖𝑒‖2 [33]. Following the derivation of the procedure for updating 𝑥𝑘 in [35], we have

‖𝐴𝑥𝑘 − 𝑏‖2 = ‖𝐵𝑘𝑦𝑘 − 𝛽1𝑒1‖ = 𝜙̄𝑘+1.

Note that ‖𝐴𝑥𝑘−𝑏‖2 decreases monotonically since 𝑥𝑘 minimizes ‖𝐴𝑥𝑘−𝑏‖2 in the gradually expanding subspace 𝑘. Therefore, 
following DP, we should stop the iteration at the first 𝑘 that satisfies

𝜙̄𝑘+1 ≤ 𝜏‖𝑒‖2 < 𝜙̄𝑘 (5.4)

with 𝜏 > 1 slightly, such as 𝜏 = 1.01. Typically, the early stopping iteration determined by DP is slightly smaller than the semi
convergence point, thereby the corresponding solution is slightly over-smoothed.

2. L-curve (LC) criterion. The LC criterion is another early stopping rule that does not need an estimate on ‖𝑒‖2 [20]. In this method, 
the log-log scale the curve(

log‖𝐴𝑥𝑘 − 𝑏‖2, log‖𝑥𝑘‖𝑀)
=

(
log 𝜙̄𝑘+1, log(‖𝑥𝑘‖𝑀 )

)
, (5.5)

is plotted, which usually has a characteristic ‘L’ shape. The iteration corresponding to the corner of the L-curve, which is defined 
as the point of maximum curvature of the L-curve in a log-log plot, is usually a good early stopping iteration.

3. Generalized cross-validation (GCV). The GCV is a statistical approach for estimating the optimal regularization parameter espe
cially for the Gaussian white noise case [17]. For the WLSQR method, the GCV function with respect to 𝑘 should be

GCV(𝑘) =
‖𝐴𝑥𝑘 − 𝑏‖22

(trace(𝐼𝑚 −𝐴𝐴
†
𝑘
))2

,

where 𝐴†
𝑘

denotes the matrix that maps the right-hand side 𝑏 to the 𝑘-th regularized solution 𝑥𝑘. By (5.3) and (4.1) we have

𝑥𝑘 =𝑄𝑘𝑦𝑘 =𝑄𝑘𝐵
†
𝑘
𝛽1𝑒1 =𝑄𝑘𝐵

†
𝑘
𝑃⊤
𝑘+1𝑏,

which implies that 𝐴†
𝑘
=𝑄𝑘𝐵

†
𝑘
𝑃⊤
𝑘+1. Using (4.5) we get

trace(𝐴𝐴†
𝑘
) = trace(𝐴𝑄𝑘𝐵

†
𝑘
𝑃⊤
𝑘+1) = trace(𝑃𝑘+1𝐵𝑘𝐵

†
𝑘
𝑃⊤
𝑘+1) = trace(𝐵𝑘𝐵

†
𝑘
) = 𝑘.

Therefore, the final expression of the GCV function is

GCV(𝑘) =
𝜙̄2
𝑘+1

(𝑚− 𝑘)2
, (5.6)

and the minimizer of this function is used as early stopping iteration.

We remark that in using GCV or L-curve method, one must go a few iterations beyond the optimal 𝑘 in order to verify the optimum. 
The whole process of the algorithm is summarized in Algorithm 3.

For the application of WLSQR to the first-kind Fredholm integral equations, the computational cost of obtaining the matrices 𝐴
and 𝑏 is relatively low when using the quadrature rule for numerical integral. The matrix 𝑀 is simply a diagonal matrix with its 
diagonal elements being the weights of the quadrature rule, and 𝐴 is the product of a matrix containing the values of the kernel 
function at the grid points and 𝑀 . In our iterative regularization algorithm, handling 𝑀−1 is very efficient because 𝑀 is diagonal.

5.2. Hybrid regularization based on WGKB

Although an early stopping criterion can be used to avoid the semi-convergence, the corresponding solution is still often over 
or under-regularized since the relative error is very sensitive near the semi-convergence point. The hybrid regularization method is 
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Algorithm 3 WLSQR with early stopping.
Input: Matrix 𝐴 ∈ℝ𝑚×𝑛 , positive definite 𝑀 ∈ℝ𝑛×𝑛 , vector 𝑏∈ℝ𝑚

Output: Final regularized solution corresponding to (5.2)
1: for 𝑘 = 1,2,…, do

2: Compute 𝛼𝑘 , 𝛽𝑘 , 𝑝𝑘 , 𝑞𝑘 by WGKB
3: Update 𝑥𝑘 from 𝑥𝑘−1
4: Compute the ‖𝐴𝑥𝑘 − 𝑏‖2 and ‖𝑥‖𝑀
5: if Early stopping criterion is satisfied then

6: Estimate the semi-convergence point as 𝑘1
7: Terminate the iteration to get 𝑥𝑘1
8: end if

9: end for

another type of iterative method that can stabilize the convergence behavior, which usually applies Tikhonov regularization to the 
projected problem at each iteration; see e.g. [7,27,37,6].

At each iteration of the hybrid regularization, we seek a regularized solution in 𝑘 = span{𝑄𝑘}, which means we find 𝑥 = 𝑄𝑘𝑦

with 𝑦 ∈ℝ𝑘 to the problem

min 
𝑥=𝑄𝑘𝑦

{‖𝐴𝑥− 𝑏‖22 + 𝜆𝑥⊤𝑀𝑥} = min 
𝑦∈ℝ𝑘

{‖𝐵𝑘𝑦− 𝛽1𝑒1‖22 + 𝜆𝑘‖𝑦‖22},
where we have used (𝑄𝑘𝑦)⊤𝑀(𝑄𝑘𝑦) = 𝑦⊤(𝑄⊤

𝑘
𝑀𝑄𝑘)𝑦 = ‖𝑦‖22. Note that 𝜆𝑘 should be determined at each iteration. Let 𝜆opt and 

𝜆
opt
𝑘

denote the optimal regularization parameters that minimize the solution error for the original problem and 𝑘-th subproblem, 
respectively. The main idea of the hybrid method is that as 𝑘 gradually increases, the projected problem approximates the original 
problem. For a large enough 𝑘 such that the solution subspace captures the main information of 𝑥true, then 𝜆opt

𝑘
can well approximate 

𝜆opt and thus the corresponding regularized solution will well approximate 𝑥𝜆opt [27,37]. Once we have determined 𝜆𝑘, the 𝑘-th 
hybrid regularized solution is

𝑥𝑘,𝜆𝑘
=𝑄𝑘𝑦𝑘,𝜆𝑘

, 𝑦𝑘,𝜆𝑘
= argmin

𝑦∈ℝ𝑘

{‖𝐵𝑘𝑦− 𝛽1𝑒1‖22 + 𝜆𝑘‖𝑦‖22}. (5.7)

In order to determine 𝜆opt
𝑘

at each iteration, we adapt the weighted generalized cross-validation method (WGCV) first proposed 
in [7]. From (5.7) we have 𝑦𝑘,𝜆 = (𝐵⊤

𝑘
𝐵𝑘 + 𝜆𝐼𝑘)−1𝐵⊤

𝑘
𝛽1𝑒1 ∶=𝐵

†
𝑘,𝜆

𝛽1𝑒1. At the 𝑘-th step, the WGCV method finds the minimizer of the 
following function with the weight parameter 𝜔𝑘 :

𝐺(𝜔𝑘,𝜆) =
‖𝐵𝑘𝑦𝑘,𝜆 − 𝛽1𝑒1‖22(

trace(𝐼𝑘+1 −𝜔𝑘𝐵𝑘𝐵
†
𝑘,𝜆

)
)2 , (5.8)

and use this minimizer as 𝜆𝑘. If 𝜔𝑘 = 1 for all 𝑘, it is the standard GCV method. The weight parameter 𝜔𝑘 is initialized and automat
ically updated following the same strategy in [7]. Using the SVD of 𝐵𝑘, we can get the analytical expression of 𝐺(𝜔𝑘,𝜆) and find its 
minimizer using the MATLAB built-in function fminbnd.m. In the ideal situation, as 𝑘 increases, 𝜆𝑘 will converge and 𝐺(1, 𝜆𝑘) will 
converge to a fixed value. We terminate the iteration at 𝑘 + 𝑠1 with 𝑘 the first iteration satisfying

|||𝐺(1, 𝜆𝑖+1) −𝐺(1, 𝜆𝑖)
𝐺(1, 𝜆1) 

||| < 𝚝𝚘𝚕𝟷, 𝑖 = 𝑘,… , 𝑘+ 𝑠1, (5.9)

where 𝑠1 + 1 is the length of the window to avoid bumps. We set 𝑠1 = 4 and 𝚝𝚘𝚕𝟷 = 10−6 by default.
If we have a good estimate of ‖𝑒‖2 , we can use the ``secant update'' (SU) method to update 𝜆𝑘 step by step quickly based on DP, 

which was first proposed for the Arnoldi-Tikhonov hybrid method [15]. A heuristic derivation of SU is as follows. At each iteration, 
define the function

𝜓𝑘(𝜆) = ‖𝐴𝑥
𝑘
− 𝑏‖2 = ‖𝐵𝑘𝑦𝑘,𝜆 − 𝛽1𝑒1‖2, (5.10)

and consider determining the proper 𝑘 and 𝜆𝑘 simultaneously by solving the nonlinear equation 𝜓𝑘(𝜆) = 𝜏‖𝑒‖2 with a fixed 𝜏 > 1
slightly. We remark that this equation has a solution only when 𝑘 is sufficiently large. We use the following secant method to solve 
the above equation. Starting from an initial value 𝜆0, suppose we already have 𝜆𝑘−1 at the (𝑘 − 1)-th iteration. Notice that 𝜓𝑘(𝜆)
monotonically increases with respect to 𝜆 [31]. It can be approximated by the linear function 𝑓 (𝜆) = 𝜓𝑘(0) +

𝜓𝑘(𝜆𝑘−1)−𝜓𝑘(0)
𝜆𝑘−1

𝜆, which 
interpolates 𝜓𝑘(𝜆) at 0 and 𝜆𝑘−1. To update 𝜆𝑘 for the next step, we replace 𝜓𝑘(𝜆) by 𝑓 (𝜆) and solve 𝑓 (𝜆) = 𝜏‖𝑒‖2, which leads to 
𝜆𝑘 =

𝜏‖𝑒‖2−𝜓𝑘(0) 
𝜓𝑘(𝜆𝑘−1)−𝜓𝑘(0)

𝜆𝑘−1. This update formula may suffer from instability for small 𝑘, since it holds that 𝜓𝑘(0) > 𝜏‖𝑒‖2. Therefore, we 
finally use

𝜆𝑘 =
||| 𝜏‖𝑒‖2 −𝜓𝑘(0) 
𝜓𝑘(𝜆𝑘−1) −𝜓𝑘(0)

|||𝜆𝑘−1 (5.11)

as the practical formula to update 𝜆𝑘 . We set 𝜆0 = 1.0 by default. Numerically we find that (5.11) is very stable in the sense that when 
𝑘 is sufficiently large, both the regularization parameter 𝜆𝑘 and residual norm 𝜓𝑘(𝜆𝑘−1) tend to plateau. Since 𝜓𝑘(0) = ‖𝐴𝑥𝑘 − 𝑏‖2 =
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𝜙̄𝑘+1, which is the residual norm of the 𝑘-th WLSQR solution, it can be updated efficiently by Algorithm 2 (without computing 𝑝𝑘
and 𝑥𝑘). To terminate the iteration, we choose 𝑘+ 𝑠2 as the stopping iteration with 𝑘 the first iteration satisfying

𝜓𝑘(0) ≤ 𝜏‖𝑒‖2 and |||𝜓𝑖+1(𝜇𝑖) −𝜓𝑖(𝜇𝑖−1)
𝜓𝑖(𝜇𝑖−1) 

||| ≤ 𝚝𝚘𝚕𝟸, 𝑖 = 𝑘,… , 𝑘+ 𝑠2, (5.12)

where 𝑠2 + 1 is the length of the window to avoid bumps. We set 𝑠2 = 4 and 𝚝𝚘𝚕𝟸 = 0.001 by default.
To summarize, we show the pseudocode of the WGKB based hybrid regularization (WGKB_Hyb) algorithm using WGCV or SU in 

Algorithm 4.

Algorithm 4 WGKB based hybrid regularization (WGKB_Hyb).
Input: 𝐴, 𝑏, 𝑀 , 𝛼 > 0, 𝜔1 or 𝜆0
1: for 𝑘 = 1,2,…, do

2: Compute 𝑝𝑘 , 𝑞𝑘 , 𝛼𝑘 , 𝛽𝑘 by WGKB
3: if ‘hybrid = WGCV’ then

4: Compute the SVD of 𝐵𝑘

5: Determine 𝜆𝑘 by minimizing (5.8)
6: Compute 𝑦𝑘,𝜆𝑘 by solving (5.7)
7: Update 𝜔𝑘 following [15]
8: else if ‘hybrid = SU’ then

9: Compute 𝑦𝑘,𝜆𝑘−1 by solving (5.7)
10: Compute the residual norm 𝜓𝑘(𝜆𝑘−1) by (5.10)
11: Computing 𝜙̄𝑘+1 recursively by Algorithm 2
12: Update 𝜆𝑘 by (5.11)
13: end if

14: Terminate iteration by (5.9) or (5.12) at 𝑘2
15: end for

16: Compute 𝑥𝑘2 ,𝜆𝑘2 =𝑄𝑘2
𝑦𝑘2 ,𝜆𝑘2

Output: Final regularized solution 𝑥𝑘2 ,𝜆𝑘2

6. Numerical experiments

We consider the Fredholm integral equation of the first kind, with the goal of recovering the unknown function 𝑓 (𝑡) from the noisy 
observation 𝑔(𝑠). While (1.3) is presented as a one-dimensional (1D) problem, our approach can also be used to solve 𝑑-dimensional 
problems with 𝑑 > 1. First, we choose four 1D inverse problems to test the proposed method, then we use our method to solve a 
large-scale two-dimensional (2D) inverse problems.

6.1. One-dimensional inverse problems

Example 1 This example is chosen from [21] with the name shaw. It models a one-dimensional image restoration problem using the 
Fredholm integral equation (1.3), where the kernel 𝐾 and solution 𝑓 are given by

𝐾(𝑠, 𝑡) = (cos 𝑠+ cos 𝑡)2
( sin𝑢

𝑢 

)2
, 𝑢 = 𝜋(sin 𝑠+ sin 𝑡),

𝑓 (𝑡) = 2exp
(
−6(𝑡− 0.8)2

)
+ exp

(
−2(𝑡+ 0.5)2

)
,

where 𝑡 ∈ [−𝜋∕2, 𝜋∕2] and 𝑠 ∈ [−𝜋∕2, 𝜋∕2].

Example 2 This example is Phillips’ famous test problem [36]. Define the function

𝜙(𝑥) =

{
1 + cos( 𝜋𝑥3 ), |𝑥| < 3
0, |𝑥| ≥ 3.

Then the kernel 𝐾 , the solution 𝑓 and the exact observation are given by

𝐾(𝑠, 𝑡) = 𝜙(𝑠− 𝑡),

𝑓 (𝑡) = 𝜙(𝑡),

where 𝑡 ∈ [−6,6] and 𝑠 ∈ [−6,6].

Example 3 This test problem is constructed by ourselves. Define the kernel function and true solution as

𝐾(𝑠, 𝑡) = 𝑒𝑠𝑡,

𝑓 (𝑡) = 𝑒𝑡 cos 𝑡

where 𝑡 ∈ [0,1] and 𝑠 ∈ [0,1].
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Table 6.1

Properties of the four test examples.

Problem Example 1 Example 2 Example 3 Example 4 
𝑚 × 𝑛 2500 × 2001 3000 × 2501 3500 × 3001 4000 × 3501
Condition number 5.89 × 1018 2.14 × 109 5.98 × 1018 1.27 × 107
Ill-posedness severe mild severe mild 

Example 4 This test problem is constructed by ourselves. Define the kernel function and true solution as

𝐾(𝑠, 𝑡) =

{
𝑠(1 − 𝑡), 𝑠 < 𝑡

𝑡(1 − 𝑠), 𝑠 ≥ 𝑡,

𝑓 (𝑡) = 𝑡− 2𝑡2 + 𝑡3,

where 𝑡 ∈ [0,1] and 𝑠 ∈ [0,1].
To discretize the Fredholm integral equation (1.3), we partition the interval [𝑡1, 𝑡2] into 2𝑙 uniform subintervals to get 𝑛 = 2𝑙 + 1

grid points 𝑡1 = 𝑝1 < 𝑝2 <⋯ < 𝑝𝑛−1 < 𝑝𝑛 = 𝑡2. The whole integral is partitioned as

𝑡2

∫
𝑡1

𝐾(𝑠, 𝑡)𝑓 (𝑡)d𝑡 =
𝑙∑

𝑖=1 

𝑝2𝑖+1

∫
𝑝2𝑖−1

𝐾(𝑠, 𝑡)𝑓 (𝑡)d𝑡,

where each integral is approximated by Simpson’s rule

𝑝2𝑖+1

∫
𝑝2𝑖−1

𝐾(𝑠, 𝑡)𝑓 (𝑡)d𝑡 ≈
𝑝2𝑖+1 − 𝑝2𝑖−1

6 
[
𝐾(𝑠, 𝑝2𝑖−1)𝑓 (𝑝2𝑖−1) + 4𝐾(𝑠, 𝑝2𝑖)𝑓 (𝑝2𝑖) +𝐾(𝑠, 𝑝2𝑖+1)𝑓 (𝑝2𝑖+1)

]
.

Therefore, the whole integral is approximated as

𝑡2

∫
𝑡1

𝐾(𝑠, 𝑡)𝑓 (𝑡)d𝑡 ≈
𝑛 ∑

𝑖=1 
𝑤𝑖𝐾(𝑠, 𝑝𝑖)𝑓 (𝑝𝑖),

with weights

ℎ

3 
{1,4,2,4,2,4,… ,2,4,1}, ℎ = (𝑡2 − 𝑡1)∕(𝑛− 1).

The observations are selected from 𝑚 uniform points in [𝑠1, 𝑠2] to get an 𝑚-dimensional vector. The task is to recover the true vector 
𝑥true = (𝑓 (𝑝1),… , 𝑓 (𝑝𝑛))⊤ from the noisy observation 𝑏 constructed as follows:

𝑏 =𝐴𝑥+ 𝑒, (6.1)

where 𝑒 ∈ℝ𝑚 is a discrete Gaussian white noise vector, and 𝐴 is the discretized kernel:

𝐴 =
⎛⎜⎜⎜⎝
𝐾(𝑠1, 𝑡1)𝑤1 𝐾(𝑠1, 𝑡2)𝑤2 ⋯ 𝐾(𝑠1, 𝑡𝑛)𝑤𝑛

𝐾(𝑠2, 𝑡1)𝑤1 𝐾(𝑠2, 𝑡2)𝑤2 ⋯ 𝐾(𝑠2, 𝑡𝑛)𝑤𝑛

⋮ ⋮ ⋱ ⋮
𝐾(𝑠𝑚, 𝑡1)𝑤1 𝐾(𝑠𝑚, 𝑡2)𝑤2 ⋯ 𝐾(𝑠𝑚, 𝑡𝑛)𝑤𝑛

⎞⎟⎟⎟⎠ ∈ℝ𝑚×𝑛. (6.2)

The scale of the noise is controlled by the noise level 𝜀 ∶= ‖𝑒‖2∕‖𝐴𝑥true‖2, which may vary for different test examples. The properties 
of the test examples are shown in Table 6.1. The discretized true solutions and noisy observations with 𝜀 = 10−2 are shown in Fig. 6.1.

From the above discretization, the data fidelity term and regularization term for the discrete ill-posed linear system (6.1) should 
be ‖𝐴𝑥− 𝑏‖22 and ‖𝑥‖2

𝑀
, respectively, where 𝑀 is the weight matrix

𝑀 = ℎ

3 
diag(1,4,2,4,2,4,… ,2,4,1). (6.3)

We demonstrate the performance of WLSQR for regularizing the four linear ill-posed problems. The standard LSQR method is used 
as a comparison, where the convergence behaviors of the two methods are shown by plotting the variation of relative reconstruction 
error ‖𝑥𝑘 − 𝑥true‖2∕‖𝑥true‖2 with respect to 𝑘. To further show the effectiveness of WLSQR, we also use 𝑥true to find the optimal 
Tikhonov regularization parameter 𝜆𝑜𝑝𝑡 for (1.7) and the corresponding solution 𝑥𝜆𝑜𝑝𝑡 , that is 𝜆𝑜𝑝𝑡 =min𝜆>0 ‖𝑥𝜆 − 𝑥true‖2. We use this 
optimal solution as a baseline for comparing the two methods. All the experiments are performed using MATLAB R2023b.

The convergence behaviors of WLSQR and LSQR are shown in Fig. 6.2 using the relative error curves, where the noise levels are 
set as 𝜀 = 10−3,10−2,10−1 for the four test examples. For each example, we find that both the two methods exhibit semi-convergence 
property, but the relative error of LSQR does not obviously decrease. In contrast, the relative error for WLSQR at the semi-convergence 
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Fig. 6.1. The true solutions and corresponding noisy observations. The noise level for all four test examples is 𝜀= 10−2 . From left to right are: (a), (e) Example 1; (b), 
(f) Example 2; (c), (g) Example 3; (d), (h) Example 4.

Table 6.2

Relative errors of the final regularized solutions and corresponding early stop
ping iterations (in parentheses), where 𝜀 = 10−3 .

Problem Example 1 Example 2 Example 3 Example 4 
Tikh-opt 0.0361 0.0060 0.0062 0.0038 
WLSQR-opt 0.0331 (9) 0.0057 (11) 0.0037 (3) 0.0029 (7) 
WLSQR-DP 0.0474 (7) 0.0089 (8) 0.0538 (2) 0.0066 (5) 
WLSQR-LC 0.0451 (8) 0.0186 (14) 0.0037 (3) 0.0233 (12) 
WLSQR-GCV 0.0474 (7) 0.0327 (15) 0.2599 (4) 0.0470 (15) 
LSQR-opt 0.3178 (9) 0.3163 (11) 0.3166 (3) 0.3162 (7) 
LSQR-DP 0.3194 (7) 0.3163 (8) 0.3206 (2) 0.3163 (5) 
LSQR-LC 0.3191 (8) 0.3164 (14) 0.3166 (3) 0.3170 (12) 
LSQR-GCV 0.3194 (7) 0.3177 (15) 0.4011 (4) 0.3194 (15) 

point is much smaller, and it is usually a bit smaller than the best Tikhonov regularization solution. This confirms the regularization 
effect of WLSQR, which can incorporate the prior information encoded by ‖𝑥‖2

𝑀
into the solution subspaces.

Table 6.2 shows the performance of the WLSQR algorithm with early stopping rules by listing the estimated stopping iterations 
and corresponding relative errors. We can find that DP always under-estimates the optimal early stopping iteration for both WLSQR 
and LSQR, while LC and WGCV can either under-estimate or over-estimate the optimal early stopping iteration. Note that for both 
LSQR and WLSQR applied to Example 2 and Example 4, LC and GCV significantly over-estimate the optimal early stopping iteration, 
thereby leads to bad solutions with much larger errors. We remark that for WLSQR, the DP method for Example 3 get a regularized 
solution with a high error, but they are much more accurate than the corresponding LSQR solutions.

We depict the reconstructed solutions computed by WLSQR with DP as an early stopping rule in Fig. 6.3, where the optimal 
Tikhonov regularized solutions are used as a comparison. We remark that for any ill-posed inverse problems, DP always under
estimates the semi-convergence point and thereby leads to an over-smoothed solution; see e.g. [12, §4.3, 7.3]. The reconstructed 
solutions for Example 1, 2 and 4 by WLSQR are all of high quantity, very close to the true solutions. For Example 3, the DP solution 
by WLSQR is significantly over-smoothed, because the relative error is extremely sensitive near the semi-convergence point. Although 
we do not depict it, the optimal solution at the semi-convergence point of WLSQR for Example 3 is very close to the true solution. In 
practice, we can not use 𝑥true to find the semi-convergence point, instead we should use a proper early stopping rule to find a solution 
with not-so-bad accuracy.

To overcome the instability of WLSQR caused by the semi-convergence, we apply the WGKB_Hyb algorithm for both the four 
examples, with the noise levels set to 𝜀 = 10−2. We denote the WGKB based hybrid methods with WGCV and SU by WGKB-WGCV 
and WGKB-SU, respectively. For WGKB-SU, we set 𝜏 = 1.001 and 𝜆0 = 1.0. In Fig. 6.4 we show the relative errors of the two hybrid 
methods as 𝑘 grows from 1 to 20. In Fig. 6.5 we display the reconstructed solutions obtained by WGKB-SU at the final iteration. It 
can be observed that the relative errors of both WGKB-WGCV and WGKB-SU eventually stabilize as 𝑘 becomes sufficiently large, with 
values only slightly higher than the lowest relative errors of WLSQR. As shown in Fig. 6.5, the reconstructed solutions computed by 
WGKB-SU closely match the true solutions for all the four examples.
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Fig. 6.2. Semi-convergence curves of LSQR and WLSQR for the four test examples. Figures from the top to bottom correspond to Example 1--Example 4; figures from 
left to right correspond to noise levels 𝜀= 10−3,10−2,10−1 .

To further illustrate the regularization effect of WLSQR, we show how the relative error of the regularized solution decreases as 
the noise level approaches zero. We let the noise levels decreases as 𝜀 = 3.2 × 10−2,1.6 × 10−2,8 × 10−3,4 × 10−3,2 × 10−3,1 × 10−3. 
The top four subfigures in Fig. 6.6 depict variations of relative error for the optimal regularized solutions computed by WLSQR, LSQR 
and Tikhonov regularization. We can find that for both WLSQR and Tikhonov regularization, the relative error of the regularized 
solution approaches zero as the noise decreases to zero. Additionally, the WLSQR solution typically exhibits better accuracy. But for 
LSQR, the relative error remains almost the same even if the noise level approaches zero, this is because LSQR does not make use of 
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Fig. 6.3. The reconstructed solutions computed by the WLSQR algorithm with DP as the early stopping rule and the Tikhonov regularization (1.7) with optimal 
regularization parameter. The noise levels are 𝜀= 10−2 for all four test examples: (a) Example 1; (b) Example 2; (c) Example 3; (d) Example 4.

Fig. 6.4. Relative error curves for WLSQR, WGKB-WGCV and WGKB-SU. The noise levels are 𝜀 = 10−2 for all four test examples: (a) Example 1; (b) Example 2; (c) 
Example 3; (d) Example 4.

the prior information encoded by ‖𝑥‖2
𝑀

. We note that for an effective regularization method, the corresponding relative error should 
converge to zero as the noise approaches zero; see e.g. [12, §3.1, 3.2]. The bottom four subfigures depict variations of relative error 
when using DP as early stopping rules. Similar to the above tests, DP does not work very well for Example 3, but it is very fruitful 
for the other three examples.
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Fig. 6.5. The reconstructed solutions computed by WGKB-SU. The noise levels are 𝜀 = 10−2 for all four test examples: (a) Example 1; (b) Example 2; (c) Example 3; 
(d) Example 4.

Fig. 6.6. Decay rate of the relative error of the regularized solution computed by WLSQR, LSQR, and Tikhonov regularization as the noise level decreases, with values 
of 𝜀 = 3.2 × 10−2,1.6 × 10−2,8 × 10−3,4 × 10−3,2 × 10−3,1 × 10−3 . Figures on the top and bottom correspond to the relative errors at the early stopping iterations that 
are optimal and estimated by DP, respectively. Figures from left to right correspond to Example 1--Example 4.

6.2. A two-dimensional inverse problem: NMR relaxometry

We use both the WLSQR and WGKB_Hyb algorithms to solve a 2D inverse problem—nuclear magnetic resonance (NMR) relaxom
etry. The aim of NMR relaxometry is to reconstruct a distribution of relaxation times associated with the probed material, starting 
from a signal measured at given times; see [32] for its applications. Mathematically, the 2D NMR relaxometry is modeled using the 
following (noiseless) Fredholm integral equation of the first kind:
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Fig. 6.7. Illustration of the NMR relaxometry problem: (a) the true solution as a function of (log10(𝑡1), log10(𝑡2)); (b) the noisy observation as a function of 
(log10(𝜏1), log10(𝜏2)), where the noise level is 𝜀= 10−3 .

𝑇1

∫
0 

𝑇2

∫
0 

𝐾(𝜏1, 𝜏2, 𝑡1, 𝑡2)𝑓 (𝑡1, 𝑡2)d𝑡1d𝑡2 = 𝑔(𝜏1, 𝜏2), (6.4)

where 𝑔(𝜏1, 𝜏2) is the noiseless signal as a function of experiment times (𝜏1, 𝜏2) and 𝑓 (𝑡1, 𝑡2) is the density distribution function.
Following the setting in [14, §3.4], we use the separable kernel

𝐾(𝜏1, 𝜏2, 𝑡1, 𝑡2) =𝐾1(𝜏1, 𝑡1)𝐾2(𝜏2, 𝑡2) ∶= (1 − 2𝑒
− 𝜏1

𝑡1 )𝑒
− 𝜏2

𝑡2

and the phantom ‘organic’ for the relaxation time distribution 𝑓 (𝑡1, 𝑡2). This is a severely ill-posed problem. To discretize (6.4), we 
consider a change of variables by using the logarithmically equispaced nodes

𝑡11, 𝑡
1
2,… , 𝑡1

𝑛1
and 𝑡21, 𝑡

2
2,… , 𝑡2

𝑛2

and use the Simpson’s rule for the double integral in (6.4) and get sampled observations at the logarithmically equispaced points

𝜏11 , 𝜏
1
2 ,… , 𝜏1

𝑚1
and 𝜏21 , 𝜏

2
2 ,… , 𝜏2

𝑚2
.

This means that for 1 ≤ 𝑙1 ≤𝑚1,1 ≤ 𝑙2 ≤𝑚2, we have

𝑔(𝜏1
𝑙1
, 𝜏2

𝑙2
) =

𝑛1∑
𝑘1=1

𝑛2∑
𝑘2=1

𝐾1(𝜏1𝑙1 , 𝑡
1
𝑘1
)𝐾2(𝜏2𝑙2 , 𝑡

2
𝑘2
)𝑓 (𝑡1

𝑘1
, 𝑡2
𝑘2
)𝑤(𝑡1

𝑘1
, 𝑡2
𝑘2
),

where 𝑤(𝑡1
𝑘1
, 𝑡2
𝑘2
) is the weight value at the point (𝑡1

𝑘1
, 𝑡2
𝑘2
). Let ℎ1 =

𝑇1
𝑛1−1

, ℎ2 =
𝑇2

𝑛2−1
, 𝑠1 =

ℎ1
3 (1,4,2,4,2,4,… ,2,4,1)⊤ ∈ ℝ𝑛1 , and 

𝑠2 =
ℎ2
3 (1,4,2,4,2,4,… ,2,4,1)⊤ ∈ ℝ𝑛2 . Then 𝑤(𝑡1

𝑘1
, 𝑡2
𝑘2
) is the (𝑘1, 𝑘2)-element of the Simpson matrix 𝑆 = 𝑠1𝑠

⊤
2 ; see e.g. [4, §4.8]. 

Therefore, we have the equation

𝐴1(𝑋 ◦𝑆)𝐴⊤
2 = 𝐵,

where ``◦'' is the Hadarmard product, and

⎧⎪⎪⎨⎪⎪⎩

𝐴1
𝑙1 ,𝑘1

=𝐾1(𝜏1𝑙1 , 𝑡
1
𝑘1
), 𝑙1 = 1,… ,𝑚1, 𝑘1 = 1,… , 𝑛1

𝐴1
𝑙1 ,𝑘1

=𝐾1(𝜏2𝑙2 , 𝑡
2
𝑘2
), 𝑙2 = 1,… ,𝑚2, 𝑘2 = 1,… , 𝑛2

𝑋𝑘1 ,𝑘2
= 𝑓 (𝑡1

𝑘1
, 𝑡2
𝑘2
), 𝑘1 = 1,… , 𝑛1, 𝑘2 = 1,… , 𝑛2

𝐵𝑙1 ,𝑙2
= 𝑔(𝜏1

𝑙1
, 𝜏2

𝑙2
), 𝑙1 = 1,… ,𝑚1, 𝑙2 = 1,… ,𝑚2.

Using the relation vec(𝐴1(𝑋 ◦ 𝑆)𝐴⊤
2 ) = 𝐴2 ⊗ 𝐴1 ⋅ diag(vec(𝑆)) ⋅ vec(𝑋), we obtain the linear system 𝐴𝑥 = 𝑏 with 𝐴 = 𝐴2 ⊗ 𝐴1 ⋅

diag(vec(𝑆)) ∈ℝ𝑚1𝑚2×𝑛1𝑛2 and 𝑥 = vec(𝑋) ∈ℝ𝑛1𝑛2 . Then we add a Gaussian white noise to 𝐴𝑥 with noise level 𝜀 = 10−3 to get a noisy 
observation vector 𝑏 ∈ℝ𝑚1𝑚2 . We set 𝑇1 = 𝑇2 = 10 and 𝑛1 = 𝑛2 = 129, while 𝜏1 and 𝜏2 vary from 10−4 to 10, and 𝑚1 =𝑚2 = 2𝑛1. Based 
on this setting, we get the matrix 𝐴 ∈ℝ66564×16641. The discretized true solution and noisy observation in logarithm scale are shown 
in Fig. 6.7.

Let 𝑀 = diag(vec(𝑆)). Then the approximation to the 𝐿2-norm of 𝑓 should be ‖𝑥‖𝑀 , and we should consider the Tikhonov regular
ization min𝑥{‖𝐴𝑥− 𝑏‖22 + 𝜆‖𝑥‖2

𝑀
} and the corresponding iterative regularization. In our experiment, we compare the regularization 

effect of the WGKB based algorithms with that of the LSQR algorithm with regularizer ‖𝑥‖22 .
To demonstrate the effective regularization of the WGKB-based algorithms, we present the relative error curves of the LSQR, 

WLSQR, WGKB-WGCV, and WGKB-SU algorithms together in Fig. 6.8. First, we find that all these WGKB based algorithms can 
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Fig. 6.8. Relative error curves for LSQR, WLSQR, WGKB-WGCV and WGKB-SU applied to the NMR relaxometry problem. 

Fig. 6.9. The reconstructed solutions for the NMR relaxometry problem, computed by WLSQR, WGKB-WGCV and WGKB-SU, where we use (log10(𝑡1), log10(𝑡2)) for the 
time variables. The WLSQR-opt and WLSQR-DP solutions are obtained at 𝑘= 184 and 𝑘 = 153, respectively.

achieve relative errors much smaller than the LSQR method. We observe the typical semi-convergence behavior of WLSQR, where 
the smallest relative error is achieved at the semi-convergence point 𝑘 = 184. Using DP, we estimate the semi-convergence point to 
be 𝑘 = 153. We also find that the semi-convergence behavior is avoided by the hybrid method, where the relative error for WGKB-SU 
is only slightly higher than the smallest relative error for WLSQR. The convergence of WGKB-WGCV is much more slower, and the 
relative error is larger than that of WGKB-SU even after 250 steps; this is a common potential flaw for hybrid methods [7,37]. The 
reconstructed solutions are depicted in Fig. 6.9. The WGKB-based methods can compute regularized solutions that do not deviate 
significantly from the true solution. We remark this example is just used for experiments, while a better regularization should include 
the incorporation of box constraints and smoothness priors on the solution [3].

To summarize, the aforementioned experiments for 1D and 2D inverse problems have confirmed that the WLSQR algorithm 
combined with a proper early stopping rule can obtain a good regularized solution for the regularizer ‖𝑥‖2

𝑀
, and the WGKB based 

hybrid regularization method can overcome the semi-convergence behavior to get a more reliable solution. When the matrix 𝑀
arising from the quadrature discretization is not an identity matrix, the WGKB based methods are better than the LSQR method, 
because it can approximate dominant WSVD components of 𝐴, which contains main information about the true solution.



Applied Mathematics and Computation 508 (2026) 129608

22

H. Li 

7. Conclusions

To analyze and compute linear ill-posed problems with regularizer ‖𝑥‖2
𝑀

, we have revisited and studied a generalization of 
the SVD under a nonstandard inner product, named the weighted SVD (WSVD). The WSVD shares several similar properties and 
applications as the standard SVD, such as the low-rank approximation property and solving the least squares problems. Meanwhile, 
it is very convenient to handle the matrix computation problems with ‖𝑥‖𝑀 -norm. We have proposed a weighted Golub-Kahan 
bidiagonalization (WGKB) for computing several dominant WSVD components, and a WGKB-based algorithm, called the weighted 
LSQR (WLSQR) to solve iteratively least squares problems with minimum ‖𝑥‖𝑀 -norm. Using the WSVD, we have analyzed the 
Tikhonov regularization of the linear ill-posed problem with regularizer ‖𝑥‖2

𝑀
and given the truncated WSVD solution. We have 

proposed the WGKB based subspace projection regularization method, which is equivalent to WLSQR with early stopping rules to 
efficiently compute the regularized solution. To avoid the semi-convergence of WLSQR, two WGKB based hybrid regularization 
algorithms are proposed. Several numerical experiments are performed to illustrate the fruitfulness of our methods.
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